
1 23

Software & Systems Modeling

ISSN 1619-1366

Softw Syst Model
DOI 10.1007/s10270-013-0374-0

A demonstration-based model
transformation approach to automate
model scalability

Yu Sun, Jeff Gray & Jules White

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Softw Syst Model
DOI 10.1007/s10270-013-0374-0

REGULAR PAPER

A demonstration-based model transformation approach
to automate model scalability

Yu Sun · Jeff Gray · Jules White

Received: 11 September 2011 / Revised: 3 August 2013 / Accepted: 7 August 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract An important aspect during software develop-
ment is the ability to evolve and scale software models in
order to handle design forces, such as enlarging and upgrad-
ing system features, or allocating more resources to handle
additional users. Model scalability is the ability to refactor
a base model, by adding or replicating the base model ele-
ments, connections or substructures, in order to build a larger
and more complex model to satisfy new design requirements.
Although a number of modeling tools have been developed
to create and edit models for different purposes, mecha-
nisms to scale models have not been well supported. In
most situations, models are manually scaled using the basic
point-and-click editing operations provided by the model-
ing environment. Manual model scaling is often tedious and
error-prone, especially when the model to be scaled has
hundreds or thousands of elements and the scaling process
involves entirely manual operations. Although model scaling
tasks can be automated by using model transformation lan-
guages, writing model transformation rules requires learn-
ing a model transformation language, as well as possess-
ing a great deal of knowledge about the metamodel. Model

Communicated by Prof. Martin Gogolla.

Y. Sun (B)
Department of Computer and Information Sciences,
University of Alabama at Birmingham, Birmingham, AL, USA
e-mail: yu.sun.cs@gmail.com

J. Gray
Department of Computer Science, University of Alabama,
Tuscaloosa, AL, USA
e-mail: gray@cs.ua.edu

J. White
Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA
e-mail: julesw@vt.edu

transformation languages and metamodel concepts are often
difficult for domain experts to understand. This requirement
to learn a complex model transformation language exerts a
negative influence on the usage of models by domain experts
in software development. For instance, domain experts may
be prevented from contributing to model scalability tasks
from which they have significant domain experience. This
paper presents a demonstration-based approach to automate
model scaling. Instead of writing model transformation rules
explicitly, users demonstrate how to scale models by directly
editing the concrete model instances and simulate the model
replication processes. By recording a user’s operations, an
inference engine analyzes the user’s demonstration and gen-
eralizes model transformation patterns automatically, which
can be reused to scale up other model instances. Using this
approach, users are able to automate scaling tasks with-
out learning a complex model transformation language. In
addition, because the demonstration is performed on model
instances, users are isolated from the underlying abstract
metamodel definitions.

Keywords Model evolution · Model scalability ·
Model transformation by demonstration

1 Introduction

Software systems often need to evolve in order to accom-
modate new features, to process larger workloads or to han-
dle other scaling issues [5]. Scaling a software system, as
a key type of software evolution, is crucial for a system’s
long-term success. Although new software engineering tools
and methodologies are being developed consistently, ensur-
ing good software scalability has always been a challeng-
ing issue. For instance, with the increasing adoption of

123

Author's personal copy

Y. Sun et al.

Model-Driven Engineering (MDE) [1,28], models are emerg-
ing as a high-level abstraction of software systems. The focus
on models as first-class entities in many domains (e.g., auto-
motive [34] and avionics domains [12]) has promoted models
to an important role in software development. The models
representing the designs and systems in complex domains
will continue to require tools and techniques to address issues
of model evolution, particularly in the area of model scala-
bility, which is the activity of building a complex model from
a base model by adding, replicating, or modifying its model
elements, connections, or substructures [22]. The need for
model scalability often emerges in the context of domain-
specific modeling when model engineers need to explore
various design alternatives in a system or software model
(e.g., scaling a model of a network of communicating nodes
from a base of 20 nodes to a larger system with 300 nodes).
The amount of manual effort to scale system and software
models is often prohibitive due to the many connections and
nodes that must be created do address a scalability need.

When scaling a software system in the context of MDE,
it is common to scale the related software models, rather
than the low-level software artifacts (e.g., source code). For
instance, feature models [19] are used as design models in
software product lines to configure the components of a soft-
ware system, such that adding new product functionality
often consists of adding new feature elements to a model.
Domain-specific models [15] can be built to specify software
systems and generate implementation code, which means that
expanding the implementation of a software system is based
on scaling the corresponding domain-specific models. More-
over, when a software system is about to be deployed, deploy-
ment models can be used to specify how to allocate software
to the underlying hardware infrastructure [39] and to moni-
tor and control the infrastructure at runtime [33]. In order to
allocate additional infrastructure to handle larger workloads,
the underlying deployment models must be scaled. Thus,
model scalability [22] is an important aspect of MDE-based
software evolution.

To support model scalability, the host modeling tool must
allow users to rapidly change the model representation [12].
Although manually editing and scaling models is the most
direct approach, it is often laborious, time-consuming, and
error-prone, particularly when a large number of model ele-
ments and connections exist. Editing a large model may
require a staggering amount of clicking and typing opera-
tions within the modeling tool [22], especially when the scal-
ability tasks crosscut the hierarchy of the system structure.
Therefore, model scalability is different from other types of
model transformation tasks where manual transformation is
still feasible (e.g., it is often practical to perform a manual
refactoring on a UML model). The process of scaling models
is often too challenging to accomplish manually, and there-
fore can benefit immensely from automation.

Model transformation has proven to be an effective
approach to automate model scalability tasks [22]. Scaling
a base model to a more complex model is a type of model
transformation. More specifically, this type of scaling is an
endogenous model transformation (i.e., model transforma-
tions within the same metamodel or the same domain) [8].
Compared with other types of endogenous model transforma-
tions, model scalability generally requires many more oper-
ations to add or remove elements, and the transformation
execution engine should be capable of executing a certain
transformation repeatedly to evolve the model to any desired
scale [12]. Many executable model transformation languages
(MTLs) have been developed to assist users in specifying the
transformation rules that describe how to scale a model from
a base state to a desired state that is more complex.

Although MTLs are powerful and expressive approaches
to automate several model scalability tasks, adopting an MTL
is not always the ideal solution. Firstly, even though most
MTLs are high-level and declarative languages, they have
a steep learning curve due to the complexity of their syn-
tax, semantics, and other special features (e.g., OCL [27]
specification is used in many MTLs). This learning curve is
particularly apparent for domain experts, such as automo-
tive engineers, who are not computer scientists and have not
received training on the use of MTLs. Furthermore, model
transformation rules are often defined at the metamodel level,
rather than in the context of a concrete model instance, which
exposes users to metamodel concepts not specific to the mod-
eling language.

Developing a deep and clear understanding of a meta-
model is challenging, especially for large and complex
domains. In some cases, domain concepts may be hidden in
the metamodel and difficult to unveil [20], which makes com-
prehension more difficult. In the context of MDE, domain
experts without a programming or computer science back-
ground can participate in building and using software mod-
els. However, the difficulties associated with using MTLs
may prevent these users from contributing to certain model
scaling tasks from which they have a large amount of domain
experience.

Our contribution in this paper is an innovative approach
to automate model scalability tasks, so that domain experts
are able to implement model evolution tasks without using a
model transformation language and without having to under-
stand the metamodel definition. In addition to the benefit
of end-user usability, we also aim to retain the benefits of
using models, being applicable to any modeling languages
and flexible to extend. The approach described in this paper
extends our previous work, model transformation By demon-
stration (MTBD) [32], which simplifies the implementation
of model transformations by inferring transformation pat-
terns from a user’s demonstrated operations to transform a
concrete model instance. Several new extensions and features

123

Author's personal copy

A demonstration-based model transformation approach

have been made to enhance our original approach and the
associated tool (i.e., MT-Scribe, which is our implementa-
tion of the MTBD concept) so that it can be adapted to handle
special needs related to model scalability. We have applied
our approach to a number of model scalability scenarios that
were previously performed by manually writing transforma-
tion rules to demonstrate the reduction in manual effort that
our approach provides. It is worth noting that our new exten-
sions are not only applicable to model scalability tasks, but
they have also been used in other scenarios such as model
refactoring, model layout configuration, and aspect-oriented
modeling. In this paper, we focus on the model scalability
task specifically, rather than a general model transformation
context, in order to accommodate the demanding scalability
challenges in the large-scale model editing and maintenance
activities, as well as better highlighting the advantages of our
approach over the alternative approaches of manual scaling
or MTL-based approaches.

The rest of the paper is organized as follows. Background
information and related work is first discussed in Sect. 2.
Three model scalability scenarios in different domains are
presented in Sect. 3 to motivate the need to support software
evolution by automating model scalability. In Sect. 4, the
original MTBD project combined with its limitations in deal-
ing with model scalability is introduced, followed by a pre-
sentation of new extensions and features that have been added
to address those problems. The solutions to solve the three
motivating examples using the extended MTBD are then
given in Sect. 5. Section 6 evaluates the new approach, point-
ing out its advantages and limitations, with Sect. 7 offering
concluding remarks.

2 Related work

Software scalability in computer systems has been well
recognized and defined. Bondi [5] provided a comprehen-
sive analysis of the characteristics of software scalability and
the impact on performance. However, automating scalabil-
ity on models in the context of MDE has not been widely
investigated. Gray et al. investigated model scalability [14]
and proposed the use of a model transformation language
to automate model scalability tasks [14,22]. They point out
that model scalability can often be specified as an endoge-
nous model transformation, and other MTLs and tools can be
used to automate model scalability tasks. In this summary of
related work, we analyze the traditional model transforma-
tion approaches that can be used to automate model scala-
bility in Sect. 2.1. In Sect. 2.2, we overview some innovative
approaches that have the potential to simplify the automa-
tion of model scalability tasks using approaches similar to
our own work on MTBD.

2.1 Traditional model transformation approaches that can
support automating model scalability

One of the most direct ways to automate model scalabil-
ity tasks is to use general-purpose programming languages
(GPLs). Most modeling tools provide APIs that assist in the
direct manipulation of an internal representation of the model
instance. The model scalability procedures can be encoded
in a GPL, such as Java and C++, which developers are gener-
ally comfortable and familiar with, avoiding extra training to
write transformations. However, the power of transformation
is often restricted by the APIs offered by a specific model-
ing tool. Furthermore, GPLs lack the high-level abstractions
to specify models and scaling transformation rules, making
the GPL-based transformations difficult to write, understand,
and maintain [30].

Because many modeling tools support importing and
exporting model instances in the form of XMI, it is possi-
ble to use the existing XML tools such as XSLT [38] to scale
models outside of the modeling tool infrastructure. Although
XSLT is specifically used to transform models and has a
higher level of abstraction compared with GPLs, it is tightly
coupled to XML, forcing the specification of transformations
using concepts at a lower level of abstraction. In addition,
transformations performed outside of a modeling tool exert
a potential risk that the models being transformed cannot be
correctly imported or exported with future versions of the
tool.

Currently, the most mature approach to automate model
scalability tasks is to specify the transformation rules by
using specialized MTLs [12,23,26]. A specialized transfor-
mation language provides a set of constructs for explicitly
specifying the behavior of the transformation, which typi-
cally can be written more concisely than GPL- and XML-
based transformation approaches. There are two major types
of MTLs in this category: textual hybrid MTLs and graphi-
cal MTLs. The former type usually combines both declara-
tive and imperative constructs to perform a transformation.
Declarative constructs are used to specify source and target
patterns as direct mapping rules, and imperative constructs
are used to implement sequences of instructions (e.g., explic-
itly specifying how the scaling process should be realized).
ATL [18] and ECL [22] are examples of textual hybrid MTLs.
By comparison, graphical MTLs convert the task of scaling
a model into a graph transformation problem by utilizing
graph matching and rewriting techniques. A typical graph-
ical MTL usually defines a transformation rule as a LHS
(left-hand side) graph representing the source model and a
RHS (right-hand side) graph representing the target model.
Then, the engine automatically matches the LHS graph in
a model and changes it into the desired RHS graph. Com-
pared with textual hybrid MTLs, it is easier to define specific
model patterns using graphs, leading to a simplification of

123

Author's personal copy

Y. Sun et al.

the transformation rules in many cases. Typical MTLs in this
category are GreAT [3] and VIATRA [4]. However, whether
a MTL has a high level of abstraction, graphical or textual, its
usage on automating model scalability always suffers from
the challenges mentioned in Sect. 1 (i.e., the steep learning
curve and need to understand the details of the underlying
metamodel), preventing a wide range of end users from con-
tributing to model scalability tasks using their expertise.

2.2 Innovative model transformation approaches that can
simplify model scalability tasks

Some innovative model transformation approaches have been
proposed and developed as alternatives to MTLs. These new
approaches share a similar goal with MTBD of making the
specification of model transformation easier and more user-
friendly, requiring less knowledge of MTLs and metamodels.
These other efforts provide strong potential to simplify the
automation of model scalability tasks.

Model Transformation By Example (MTBE) [36] is an
innovative approach to address the challenges inherent from
using model transformation languages. Instead of writing
transformation rules manually, MTBE enables users to define
a prototypical set of interrelated mappings between the
source and target model instances, and then the metamodel-
level transformation rules can be inferred and generated
semi-automatically. In this context, users work directly at
the model instance level and configure the mappings with-
out knowing any details about the metamodel definition or
the hidden concepts. With the semi-automatically generated
rules, the simplicity of specifying model transformations is
greatly improved. As first introduced by Varró [36], the proto-
typical transformation rules of MTBE can be generated par-
tially from the user-defined mappings by conducting source
and target model context analysis. Varró later proposed a way
to realize MTBE by using inductive logic programming [37].
Similarly, Strommer and Wimmer implemented an Eclipse
prototype to enable generation of ATL rules from the seman-
tic mappings between domain models [31,40]. Instead of
using logic programming engines, their inference and rea-
soning process is based on pattern matching.

However, the current state of MTBE research still has
some limitations and may not be the best approach to auto-
mate model scalability tasks. The semi-automatic generation
often leads to an iterative manual refinement of the generated
rules; therefore, the model evolution designers are not iso-
lated completely from knowing the transformation languages
and the metamodel definitions. In addition, the inference of
transformation rules depends on the given sets of mapping
examples. In order to obtain a complete and precise inference
result, one or more representative examples must be avail-
able for users to setup the prototypical mappings, but seeding
the process with the proper scalability examples is likely to

be a time-consuming task that may not provide the level of
detail to infer all of the scalability needs. Furthermore, cur-
rent MTBE approaches focus on mapping the corresponding
domain concepts between two different metamodels with-
out handling complex attribute transformations. Therefore,
it is impossible to automate the configuration of attributes in
the scaling process, which is commonly required in practice.
Furthermore, current MTBE approaches fit the exogenous
model transformation concept very well to map the concepts
one-to-one between two different domains, but they are not
as practical when it comes to endogenous model transfor-
mations where one-to-multiple or multiple-to-multiple map-
pings between the source and target models are involved,
which presents limitations in supporting model scalability
evolution activities.

Brosch et al. [6,7] introduced a method for specifying
composite operations within the user’s modeling language
and environment of choice. The user models the compos-
ite operation by example, changing a source model into the
desired target model. By comparing the source and target
states, the specific changes can be summarized by a model
difference algorithm. After giving additional specification of
the precondition and post-condition, an Operation Specifi-
cation Model (OSM) can be generated that represents the
composite operation scenario and can be used to generate
other transformation artifacts. Similar to MTBE, users can
work on the concrete model instance level without knowing
about the metamodel to define composite operations through
examples. Although user refinement (e.g., specification of
pre- and post-conditions) is also needed to make the gener-
ated transformation complete and accurate, the refinement is
done at the example level through the given interfaces rather
than at the generated transformation rule when using MTBE.
In addition, the composite operation focuses on endoge-
nous model transformation, which could be used potentially
to support automating model scalability tasks. However,
the limitations with this approach are as follows: (1) Even
though the refinement process is not on the level of generated
model transformation rules, some programming concepts
are involved (e.g., includesAll(), isEmpty(), and
some iteration control), making this process dependent on
technical skills that some domain experts may not possess;
(2) attribute transformation has not been considered and
implemented, which shares the same problem as MTBE; (3)
in the generation of artifacts for a certain scenario, a man-
ual binding process is required to map the elements in the
OSM to the new concrete model. Although a user-friendly
interface has been developed to simplify the procedure, the
manual binding process would become a problem when a
large number of model elements and connections are present
in a scaling scenario.

Beyond the model transformation area, Damm and Harel
have investigated system interaction modeling, which offers

123

Author's personal copy

A demonstration-based model transformation approach

important guidance to our work [9]. They extended the Mes-
sage Sequence Chart (MSC) to Live Sequence Chart (LSC)
by introducing more expressive, generic, and executable
mechanisms to capture more behavioral requirements. For
instance, LSC provides different types of loops for the spec-
ification of iteration, which is similar to our generic opera-
tions. Because LSC has a deep formal and theoretical founda-
tion, we believe that the MTBD demonstration process might
be specified formally in a similar manner or even converted
to LSC under certain conditions, which means that we could
potentially reuse the formalism of LSCs to consolidate the
formal specification of MTBD.

3 Motivating examples: illustrating model scalability
issues

This section presents three examples that motivate the need
for automating model scalability to support software evolu-
tion in different phases of software development. For each
of the three examples in Sects. 3.1, 3.2, and 3.3, back-
ground information about the specific application domain
and context will be given, followed by an illustration using
a concrete model instance. Then, we present a typical scal-
ing evolution scenario in the domain, as well as a desired
model instance after the scaling process. The challenges of
accomplishing these model scalability tasks will be summa-
rized in Sect. 3.4. The specific approach for using MTBD to
address the needs arising from these examples will be given in
Sect. 4.

3.1 Adding new event types: evolving software design
models

Stochastic reward nets (SRNs) [25] can be used for eval-
uating the reliability of complex distributed systems. The
Stochastic Reward Net Modeling Language (SRNML) was
developed to describe SRN models of large distributed sys-
tems [22], in order to design and model performance-based
system properties such as the schedulability, performance,
and time profiles. For example, the SRN model defined by
SRNML in Fig. 1 depicts mechanisms to handle synchro-
nous event demultiplexing and dispatching when applying
the reactor pattern [29] in middleware for network services.
In [22], we showed how scalabilty could be addressed using
a traditional MTL; in this paper, we show how the MTBD
approach can be used as an alternative for describing scala-
bility tasks.

The reactor pattern handles service requests to a ser-
vice handler from one or multiple input events concurrently.
Whenever an event comes in, the service handler demulti-
plexes the incoming event to its associated event handler.
Thus, an SRN model consists of two parts: the event types

handled by a reactor and the associated execution snapshot.
The execution snapshot specifies the underlying mechanism
for handling the event types included in the top part, so any
change made to the event types will require corresponding
changes to the snapshot. In Fig. 1, the original model has two
event types, 1 and 2. Each event type is represented by a set
of elements including its arrival transition (e.g., A1), to queu-
ing place (e.g., B1) and finally service (e.g., Sr1) through the
immediate transitions (e.g., Sn1). The immediate transition is
enabled when a snapshot is taken. The arc from the queuing
place back to the arrival transition is used to avoid the firing
of a transition in special cases. The bottom of the original
model in Fig. 1 represents the process of taking successive
snapshots and non-deterministic service of event handles in
each snapshot through some snapshot transitions and places
(e.g., StSnpSht, TStSnp1, TProcSnp1,2).

Scalability Scenario in SRNML (Example 3.1) The scala-
bility challenges of SRN models are triggered when new
event types and the corresponding connections with event
handlers are added. As shown in the bottom of Fig. 1, when
two new event types (3 and 4) need to be modeled, two new
sets of event types and connections (i.e., from A3 to Sr3,
from A4 to Sr4) should be added. Also, the snapshot model
should be scaled accordingly by adding new snapshot places
(i.e., SnpLnProg3, SnpLnProg4), transitions from starting
place to end place (i.e., TStSnp3, TEnSnp3, TStSnp4, TEn-
Snp4), transitions between each new place and each existing
place (i.e., TProcSnp3,1, TProcSnp1,3, TProcSnp3,2, TProc-
Snp2,3, TProcSnp4,1, TProcSnp1,4, TProcSnp4,2, TProc-
Snp2,4, TProcSnp3,4, TProcSnp4,3), as well as all the needed
connections between places and transitions. Thus, adding
new event types always results in creating new sets of model
elements and making connections between the new event
type to every existing event type. Section 5.1 will explain the
detailed scaling process step by step.

3.2 Enlarging event services: evolving software
implementation models

The Event QoS Aspect Language (EQAL) [10] is a domain-
specific modeling language (DSML) to configure publisher–
subscriber event services for large-scale distributed systems.
Publisher–subscriber is an effective mechanism that can be
used in event-based communications, in order to reduce
software dependencies, enhance system composability and
evolution, and enable anonymous and asynchronous com-
munications among application components. Several EQAL
model transformations have been implemented that take
EQAL models as input and generate publisher–subscriber
service configuration files, component property descrip-
tions, and part of the underlying code to support system

123

Author's personal copy

Y. Sun et al.

Fig. 1 An SRN model before (top) and after (bottom) scaling

implementation. We previously used a model transformation
language to perform scalability tasks [14], but focus in this
paper on how such tasks can be demonstrated.

The top of Fig. 2 illustrates a model defined by EQAL
to specify a federation of event channels in different sites,
which allows sharing of filtering messages and event commu-
nications in the channels through CORBA gateways. A Site
can contain an EventChannel, multiple Gateways, an Event-
Consumer, an EventSupporter, and multiple EventTypeRefs.
Connections can be built between the EventChannel and
Gateway, as well as EventConsumer, EventSupporter, and
EventTypeRef. The EventSupporter acts as a publisher to
generate events to be transmitted, while the EventConsumer
receives events through hook operations. The EventChannel

accepts the events from EventSupporter and delivers them to
EventConsumer throughGateways.

Scalability scenario in EQAL (Example 3.2) One complex
scalability issue in EQAL arises when scaling a small feder-
ation of event services to a large one, which involves creating
or replicating a large number of publishers, subscribers, and
the associations. The bottom of Fig. 2 shows a federated event
service with five Sites, which is scaled up from the federated
event services with three Sites. The scaling process involves
adding new Sites that contain an EventChannel, a number of
Gateways (the number of Gateways depends on the number
of existing Sites), an EventSupplier, an EventConsumer, two
EventTypeRefs, and the connections amongthem. In addition,

123

Author's personal copy

A demonstration-based model transformation approach

Fig. 2 An EQAL model before (top) and after (bottom) scaling

new Gateways need to be added to each original Site and new
connections need to be built to connect the new Site with orig-
inal Sites.

3.3 Replicating overloaded application nodes: evolving
software maintenance models

Cloud computing shifts the computation from local, indi-
vidual devices to distributed, virtual, and scalable resources,
thereby enabling end users to utilize the computation, stor-
age, and other application resources on demand [17]. A user
can create, deploy, execute, and terminate the application
instances in the cloud as needed, and pay for the cost of time
and storage that the active instances use based on a utility
cost model.

The Cloud Computing Management Modeling Language
(C2M2L) [33] is a DSML constructed specifically to describe
the deployment of application nodes in the cloud and monitor
the running status of each node. For instance, the top of Fig. 3
shows a diagram of an EJB cloud application deployed in

Amazon EC2 [2], containing four Nodes—Web Tier Instance,
Middle Tier Instance, Data Tier Instance, and Load Balancer.
NodeServices are included in each Node (e.g., Apache, Tom-
cat, MySQL, JBoss, OpenSSH) to define the services needed
for each tier instance. A list of properties can be configured
for each Node, such as the name of the host (i.e., HostName),
the running status of the Node (i.e., IsWorking), the load of
the CPU (i.e., CPULoad), and the changing rate of the CPU
load (i.e., CPULoadRateOfChange). This model configures
the deployment and execution parameters of an application
in a cloud computing server.

To facilitate the management of applications in the cloud, a
causal relationship is built between the running applications
and the model. Changes to the state of the cloud applica-
tion must be communicated back to the modeling tool and
translated into changes in the elements of the model, while
changes from the model must also be pushed back into the
cloud. Therefore, the models defined by C2M2L serve as
an interface to deploy, monitor, and manage the applications
in the cloud at runtime. Our previous work considered the

123

Author's personal copy

Y. Sun et al.

Fig. 3 A C2M2L model before (top) and after (bottom) scaling

adoption of a model transformation language to perform scal-
ability tasks on C2M2L models [33]. In this paper, we focus
on the opportunities to demonstrate such tasks without the
need for a model transformation language.

Scalability Scenario in C2M2L (Example 3.3) One essential
task in the management of applications in the cloud is to
ensure that each node is handling a proper amount of work
load without being overloaded. For instance, if the CPULoad
and CPULoadRateOfChange of a certain Node are both out
of the normal range, more Nodes containing the same Node-
Services and configuration need to be replicated in order to
balance the work load. As shown in the bottom of Fig. 3,
one more Web Tier Instance Node is replicated to handle the
increasing workload of the original single Node. To accom-
plish this task, creating the same Node and NodeServices
are needed, as well as setting up all the properties to be the
same as the previous Node, except balancing the CPULoad of
both Nodes. In this scenario, the CPULoad and CPULoad-

RateOfChange properties must be checked before scaling,
so that the new Node will be added only when the existing
Node is really out of the normal range. This management
task becomes challenging when a large number of applica-
tion Nodes are running in the cloud. Automating the detec-
tion of overloaded Nodes and replicating them promptly are
essential to ensure that applications are running correctly and
smoothly.

3.4 Challenges of model scalability current practice

Scalability issues often emerge in systems and software mod-
els due to the need to explore various design alternatives
(e.g., what happens when the number of base nodes scales
from 150 to 300, and how is the model brought to a cor-
rect state to understand the tradeoffs and requirements for
such a new design change?). For each of the model scal-
ability scenarios presented thus far in this paper, it is pos-
sible to edit the model manually to scale it from a simple

123

Author's personal copy

A demonstration-based model transformation approach

state to another simple state (e.g., adding two new events
in a two-event SRN model, creating one event service for
a 3-Site EQAL model, or replicating two new Nodes in a
C2M2L model). The smaller examples presented in these
figures were chosen to illustrate the basic needs of a scal-
ability task. However, it becomes extremely challenging to
scale each of these scenarios manually to a complex state
when there are a large number of new elements that need
to be added and connected. This challenge comes not only
from the quantity of the required editing operations, but also
the required accuracy and correctness, because a model scal-
ability scenario often involves various types of error-prone
activities, such as: (1) locating the correct part of a model to
be scaled, (2) creating proper elements and connections, (3)
precisely replicating elements and connections, (4) setting
up correct properties, and (5) making accurate connections
between existing elements and newly created ones. Some
of these examples (i.e., from Sects. 3.1 and 3.2) have been
automated in the past using a model transformation language
(MTL) [14,22,33]. However, the end users of these languages
(e.g., domain experts, such as cloud computing administra-
tors) might not have experience in using MTLs. Although it
is possible for end users and model transformation experts
to work together to solve the problems, ensuring a correct
communication between the two sides is not always an easy
task. Therefore, a simpler approach is needed to assist end
users in specifying their own model scalability scenarios.

4 Automating model scalability using MTBD

In this section, we first give a brief introduction to the ideas
behind MTBD (Sect. 4.1). Then, the key limitations that ini-
tially prevented MTBD from being applied to model scalabil-
ity tasks are identified (Sect. 4.2), followed by the enhance-
ments we have made to address these limitations (Sect. 4.3).

4.1 Overview of MTBD

MTBD is a model transformation approach motivated by
the difficulties that domain experts experience when they
try to learn model transformation languages and understand
metamodel definitions. We first introduced the core idea of
MTBD in [32]. The basic idea (illustrated in Fig. 4) is that
instead of manually writing transformation rules in a spe-
cific model transformation language, users demonstrate how
a model transformation should be done by directly editing
(e.g., add, delete, connect, update) a concrete model instance
to simulate the desired model transformation process (User
Demonstration). A recording and inference engine has been
developed to capture all user operations performed during
the demonstration (Operation Recording). After the record-
ing process has completed, the inference engine optimizes

Fig. 4 Overview of MTBD (adapted from [32])

the recorded operations (Operation Optimization) and infers
a transformation pattern that specifies the precondition of
the transformation and the sequence of actions needed to
realize the transformation (Pattern Inference). This pattern
can be reused by automatically matching the precondition in
any model instance and replaying the actions to execute the
intended model transformation (Pattern Execution). During
the execution of a transformation pattern, constraint check-
ing ensures that the execution does not violate the metamodel
definition of the domain.

The idea of MTBD has been implemented as an Eclipse
plug-in for the Generic Eclipse Modeling System (GEMS)
[11], resulting in a tool called MT-Scribe. The project page
for MT-Scribe [24] contains sample videos and the open
source implementation. Without using any model transfor-
mation languages or the need to understand metamodels,
domain experts who are not computer scientists are able to
demonstrate endogenous model transformations and execute
generated transformation patterns in an automated manner.
Similarly, this approach can be used to demonstrate how
to scale models and infer corresponding patterns. This sec-
tion presents a simple example based on EQAL to illustrate
the basic idea of using MTBD to support automated model
scalability.

Assume that for each Site in an EQAL model, we desire to
add one more Gateway (called NewGateway). To accom-
plish this task using MTBD, a user needs to demonstrate the
scalability task by finding a single Site, adding a Gateway
to it, followed by changing the name of the new Gateway.
Operations in List 1 represent the user-demonstrated actions
that are performed in the demonstration (a Site called Site1
is selected in the demonstration, see Fig. 5).

After the demonstration is completed, a transformation
pattern can be inferred. This pattern specifies the precondi-
tion as shown in List 2, which specifies the required elements

123

Author's personal copy

Y. Sun et al.

List 1 Operations performed in the demonstration

Sequence Operation performed

1 Add a new Gateway in Site1

2 Set Site1.Gateway.name = “NewGateway”

for this transformation with their containment relationship as
well as the metatypes. In this case, the precondition is a Site
in the ModelRoot which contains one Gateway. The trans-
formation actions (i.e., adding a new Gateway and changing
its name) are listed in List 3. These lists are abstract repre-
sentations of how the pattern is saved, which are invisible to
end users. We use generic names (e.g., “elem”) to indicate
that the elements have been generalized from the concrete
demonstration examples.

A user may then apply this pattern to any other EQAL
model. The engine will traverse the model and match the
precondition using a backtracking algorithm, after which the
transformation actions will be executed. In this example, all
the Sites in the model will automatically have a new Gate-
way added with the name being “NewGateway” (Fig. 6
shows the pattern applied to an EQAL model containing six
Sites).

4.1.1 Operation recording

Considering a model transformation process as a function,
the goal of MTBD is to allow users to express domain knowl-
edge regarding a function (i.e., domain function), D, by
demonstrating a concrete application of the domain func-
tion. That is, the user describes a domain-specific function
that can be applied to a model in order to achieve a domain-
specific goal. For example, the EQAL example in Sect. 3.2
captured a domain function, D, that expressed how to scale
up a publisher/subscriber model by adding Sites, EventChan-

List 2 Precondition—elements needed and corresponding metatypes

Elements needed for operations Element MetaType

elem1.elem2 elem1 ModelRoot

elem1.elem2.elem3 elem2 Site

elem3 Gateway

List 3 Transformation actions

Sequence Transformation action

1 Add elem3 in elem1.elem2

2 Set elem1.elem2.elem3.name = “NewGateway”

nels, and Gateways. A critical component of MTBD is that
the domain function (transformation) is expressed in terms of
the notations in the modeling language and not the notations
used to describe the metamodel.

MTBD captures domain functions as transformations that
can be applied to models that adhere to the metamodel of the
target domain. The first step in MTBD is for a user to apply the
domain function to a model so that the MTBD engine can cap-
ture the set of model modifications. The process begins by the
user or an external signal initiating a recording process. Dur-
ing the recording process, the user demonstrates the domain
function on a specific model instance.

The domain function D takes an initial model M as input
and produces a new model, M ′, as output (i.e., M ′ = D(M)).
Although it is possible that M and M ′ are not conformant
to the same metamodel, this paper explicitly focuses and
enforces this assumption of an endogenous transformation.
In MTBD, a model is a typed directed graph that can contain
cycles. A model M consists of one or more Nodes (i.e., a
typed object element—E), Connections (i.e., the link con-
necting two Nodes—C), and Attributes (i.e., the properties
associated with Nodes or Connections—A). The models
that we are transforming are based on EMF as used by GEMS.

Fig. 5 The EQAL model before (left) and after (right) the demonstration

123

Author's personal copy

A demonstration-based model transformation approach

Fig. 6 An EQAL model before (left) and after (right) applying the inferred scaling transformation pattern

4.1.2 Pattern inference

After the recording process, the MTBD engine processes a
series of model modifications, T , that express the applica-
tion of the domain function to a specific model. The next
step of MTBD is to use pattern inference to generalize and
describe the domain function as a model transformation. A
critical aspect of this process is that the recorded model mod-
ifications, T , are expressed in terms of a specific model,
M . However, the transformation must be generalized and
expressed in terms of the general metamodel notations cap-
tured in the metamodel, rather than a specific model’s ele-
ments. MTBD generalizes T as T ′ through an inference
process. The inference step produces a model transforma-
tion, which we describe as a tuple:

Transformation = 〈
P ′, T ′〉 (1)

where P ′ is a set of generalized preconditions that must be
met in order to apply the transformation, and T ′ is the set of
generalized model modifications that transform the source
model to the desired target model. In terms of the domain
function, P ′ describes the domain knowledge regarding the
circumstances in which D can be applied, and T ′ defines
what to do when these circumstances are met. For example,
in the cloud computing example from Sect. 3.3, P ′ is the
precondition that the rate of change of CPU load is above
a set threshold, and T ′ represents the modifications to the
system needed in order to scale up the number of virtual
machine instances to handle the load.

Precondition inference The preconditions can be subdivided
into two types:

1. Structural preconditions that govern the types of ele-
ments, the containment relationships, and connection

relationships that must exist within the model. For exam-
ple, in the EQAL motivating scenario, there must be an
element of type Site contained within an element of type
Root.

2. Attribute preconditions specify the required values of
attributes on the model elements. For example, in the
cloud computing scenario, the CPULoadRateOfChange
attribute of a Node element must be above a specified
threshold.

Structural preconditions The structural preconditions take
the form of assertions on the hierarchy or connection rela-
tionships that must be present in the model. A hierarchical
precondition, Pe, is described as a tuple representing the types
of model elements that are encountered if traversing from a
specific element to the root of the model:

Pe =< Pe1, Pe2, . . . , PeN > (2)

Assume that an element E1 in the Model M is 4 levels
away from the root. A hierarchical precondition, Pe, would
be a 4-tuple and describes the types of ancestors of E1, where
Pe0 is the type of e, Pe1 is the type of e’s parent, Pe2 is the
type of e’s parent’s parent, and so forth. In order for this
precondition to hold in an arbitrary model, an element must
exist with type Pe0, where each ancestor K levels further
up in the tree of model elements exactly matches the corre-
sponding type PeK. For example, the parent of the parent of
an element E1 would need to match the type Pe2.

A connection precondition is another form of a structural
precondition. Connection preconditions dictate the C where
Pse specifies a precondition, such as a hierarchical precon-
dition, that must be met for an element to be considered the
source element of a connection to be modified; Pte is a pre-
condition that must be met for an element to be considered

123

Author's personal copy

Y. Sun et al.

the target element of the connection; and Tc is the type of
connection that must exist between the elements that satisfy
the source and target structural preconditions.

The inference function evaluates each change that was
recorded from the user’s application of the domain func-
tion to M . From these changes, structural preconditions are
extracted as follows:

• Added Elements For each model element E2 that is
added to an element E1 in the model, a precondition,
Pe, is created that describes E1 and its ancestors.

• Removed Elements If an element, E1, is removed from
the model, a precondition, Pe, is created describing E1.

• Added Connections Each new connection, C1, which
is added from model element E1 to E2, produces a new
precondition, Pc. The source precondition, Pse, of Pc is
created by generating a hierarchical precondition describ-
ing E1 and its ancestors. The target precondition, Pte, of
Pc is created by generating a hierarchical precondition
for E2. Finally, because a new connection is being cre-
ated and an existing connection of a specific type is not
needed, Tc is set to a type that matches any or no existing
connections between the elements.

• Removed Connections Each deleted connection, C1,
that previously started from model element E1 and ended
at model element E2 produces a new precondition, Pc.
The Pse and Pte preconditions of Pc are generated as
described above for added connections. Tc is created by
generating a precondition describing the type of C1.

• Changed Attributes If an element, E1, has an attribute
value changed, a precondition, Pe, is created. Pe describes
the type of E1 and its ancestors.

Attribute preconditions Attribute preconditions specify the
required values of properties on elements that a transforma-
tion will be applied to. An attribute precondition, Ac, is spec-
ified as a tuple:

Ac =< Pe, Expr > (3)

where Pe is a structural precondition specifying the source
model element to which the attribute precondition must
be checked. The Expr component specifies a mathematical
expression over the attributes of an element that satisfies Pe.
Currently, the attribute must be a primitive value, and only
arithmetic primitives (e.g., addition, multiplication, division,
and subtraction) are supported.

Attribute preconditions are difficult to infer automatically.
Simple algorithms can extract preconditions that specify an
exact value of one or more element attributes. However, these
algorithms are often too exclusive and generate precondi-
tions that require exact matching of all attribute values. Ide-
ally, attribute preconditions are specified as expressions from

domain knowledge covering the affected elements. Manual
inference refinement is used to capture this type of attribute
precondition.

4.1.3 Manual inference refinement

The goal of MTBD is to generate a transformation, T ′, that
faithfully represents the domain function. However, in many
circumstances, the model that the function is demonstrated on
may lack sufficient information to infer preconditions accu-
rately. For example, in the cloud computing example from
Sect. 3.3, the cloud computing model does not have any infor-
mation related to the CPU rate of change threshold at which
scaling should occur. In this type of situation, the domain
expert must be able to refine the inferred preconditions, by
providing a CPU rate of change threshold value, in order to
ensure that T ′ accurately captures the domain function. The
optional manual inference step allows the user to view and
modify the inferred transformation and preconditions pro-
duced by the inference. The following section describes in
detail the need for a manual refinement step.

4.2 Limitations of original MTBD to support model
scalability

Although the example in Sect. 4.1 is simple, it shows the
potential for assisting end users in using MTBD to auto-
mate model scalability. However, this example is too sim-
ple to illustrate its real practicality. In fact, some key limita-
tions existed in our previous implementation of MT-Scribe
that prevented the MTBD concepts from being applied to
complex model scalability tasks in practice.

Specific and restricted specification of preconditions To
scale a model, a precise precondition is needed to specify
exactly where to execute the model transformation. How-
ever, in the original implementation of MT-Scribe, only the
weakest precondition can be inferred from the demonstra-
tion, such that there was no way for the end user to provide
more restricted conditions. A model satisfying the weakest
precondition is defined as the model containing the mini-
mum sufficient elements for each operation to be executed
correctly. In the previous example, the precondition inferred
(List 2) indicates that a Site must exist in the Root, so that a
Gateway can be added in this Site, and the name of the new
Gateway can be updated later.

The weakest precondition is insufficient in practice. In
many cases, more specific restrictions are often required to
provide additional control on where to scale a model pre-
cisely. For example, users may want to add the new Gateway
in the Site only if a certain attribute of the Site satisfies a spe-
cific condition (e.g., Site.capacity >= 100 as shown in Fig. 7);
or users may want to add the new Gateway only if the Site

123

Author's personal copy

A demonstration-based model transformation approach

Fig. 7 Scaling specific locations based on preconditions

Fig. 8 The inferred transformation actions are not generic. a Replicate a Site in a demonstration. b The inferred pattern failed to replicate all
Gateways

has no outgoing and incoming connections from it. These
kinds of specific precondition requirements are needed fre-
quently in model scalability tasks. Scaling a model by adding
or replicating model elements or connections often requires
the end user to select specific locations to scale, rather than
simply enlarging all the places that could fit and execute
the recorded operation in a demonstration (e.g., Example
3.3 requires the creation of new Nodes only when the CPU-
Load and CPULoadRateOfChange are both out of the normal
range). Therefore, enabling users to specify more restricted
and specific preconditions was the first need for extending
MT-Scribe.

The inferred transformation actions are not generic In
addition to the precondition, another part of the inferred
transformation pattern is the list of transformation actions,
which are extracted from the recorded operations. However,
the inferred actions are specific to a user’s demonstration,
which means that the sequence, the number and the type of
inferred actions are exactly the same as the recorded opera-
tions. The consequence is that may not be generic enough to

reflect a user’s real transformation intention. For instance, a
user may want to replicate a Site (e.g., Site1 in Fig. 8a) that
contains an EventChannel and two Gateways. This would
require that the operations in List 4 be performed in the
demonstration.

The real intention of this demonstration is to make an exact
copy of Site1, including all the elements contained. However,
the inferred transformation pattern only works correctly if
the Site to be replicated contains exactly the same number of
elements as the Site in the demonstration—one EventChan-
nel and two Gateways. If there are more than two Gateways
(e.g., Site3 in the left of Fig. 8b), only two of them (i.e.,
Gateway1 and Gateway2) will be replicated, and Gateway3
and Gateway4 will not be copied (e.g., Site3 in the right of
Fig. 8b is the Site created after executing the inferred replica-
tion pattern). This situation emerges because in the demon-
stration, the user only performed the necessary operations
to add two Gateways, although his or her real intention was
to copy all of the available Gateways. If there are less than
two Gateways (e.g., one Gateway1 is in the Site), the pattern
will also fail to replicate the Site, because this Site does not

123

Author's personal copy

Y. Sun et al.

List 4 Operations performed to replicate a Site

Sequence Operation performed

1 Add a new Site in EQALRoot

2 Set Site.name = Site1.name

3 Add an EventChannel in the new Site

4 Set EventChannel.name = Site1.EventChannel.name

5 Add a Gateway in the new Site

6 Set Gateway.name = Site1.Gateway1.name

7 Add a Gateway in the new Site

8 Set Gateway.name = Site1.Gateway2.name

satisfy the weakest precondition due to a lack of sufficient
Gateways to execute the two replicating operations in the
demonstration.

The inability to infer generic actions may lead to a major
problem when dealing with model scalability tasks. The num-
ber of specific elements or connections varies frequently
in different scaling situations, and the number will usu-
ally increase after each scaling process (e.g., Example 3.1
requires the creation of transitions between the new snap-
shot place and each of the existing snapshots, but the number
of existing snapshots varies). Because of this, a specific and
non-generic inferred transformation obviously cannot handle
each scenario readily. Therefore, we needed to extend MT-
Scribe to enable the inference of more generic transformation
actions.

More diverse options are required in attribute transfor-
mation Enabling attribute transformation (e.g., transforming
a specific attribute from one value to another value through
arithmetic or string computations) in a user-friendly manner
is an important innovation in MTBD. However, only simple
computations such as basic arithmetic (i.e., +,−, ∗, /) and
string concatenation were supported in earlier versions of
MT-Scribe. To perform model scalability tasks, other oper-
ations are needed. For instance, the name of a certain ele-
ment should be constructed based on a substring of the name
of another element in the base model (e.g., Example 3.1
requires the creation of a new snapshot transition by combing
the names of the source and target snapshot places, such as
TProcSnp1,3). However, obtaining the substring was not pos-
sible in previous versions of MT-Scribe. In other cases, the
value of a certain attribute should be decided from the user’s
input (e.g., Example 3.1 requires the name of the new event
to be obtained by the end user), which is independent of any
attributes existing in the model. This required the addition of
interactive user input to MT-Scribe.

More options are needed to control the execution of trans-
formation patterns In the original version of MT-Scribe,
when applying a generated transformation pattern, only a
single pattern could be selected to execute just once. How-

ever, in the context of model scalability, scaling a base model
to a complex model requires repeated execution of a trans-
formation to avoid manual execution of the transformation in
multiple times. Additionally, to handle complex scalability
requirements, more than one transformation pattern is needed
to work in sequence to achieve the desired result. Therefore,
users should be able to select and execute multiple patterns
together in a composed pipeline sequence, realizing the exe-
cution of a transformation chain.

4.3 New extensions and features to MTBD

To address these limitations in the previous version of MT-
Scribe, and adapt it to model scalability requirements, several
new features and extensions have been made. The extensions
made to MT-Scribe to address the model scalability needs are
summarized in this section.

A user refinement step to specify preconditions Inferring
the specific preconditions from only the demonstration can
be difficult and inaccurate, because the performed operations
only reflect the actions with very limited information about
the precondition. Therefore, additional feedback should be
given by users so that the inference engine can refine the gen-
erated pattern. In order to maintain the simplicity of MTBD,
a user-friendly interface has been implemented to enable user
selection of a specific element and specification of the desir-
able preconditions, without having to know model transfor-
mation languages or metamodel definitions (Fig. 9).

Figure 10 shows the precondition specification dialog. The
upper-left lists all the recorded operations in the demon-
stration. By clicking on a specific operation, all the model
elements involved will be listed, so that a user can find
the elements easily for which he or she wants to pro-
vide more constraints. Similarly, by clicking on a cer-
tain element, all its attributes and associated values are
listed. Users can select certain attributes and type the nec-
essary restrictions. For example, the following additions
could be made: “Site1.capacity >= 100”, “Site1.capacity
== Site2.capacity == Site3.capacity”, “Node1.CPULoad >

80 && Node1.CPULoadChangeOfRate > 10”. Also, con-
straints can be given on the attributes that are not defined in
the metamodel, such as the number of outgoing or incom-
ing connections. Through this interface, users continue to
work at the model instance level to give specific precon-
ditions on the elements they considered in the demon-
stration. The meta-information and generic computation
will be inferred and stored in the transformation pattern
automatically.

A new user refinement step to identify generic opera-
tions From the Site replication example in Sect. 4.1, it can be
observed that the reason an inferred transformation pattern

123

Author's personal copy

A demonstration-based model transformation approach

Fig. 9 Overview of extended
MTBD

Fig. 10 Precondition
specification dialog in
MT-Scribe

does not work correctly for the Sites containing more than
two Gateways is that the inferred actions are specific to the
user’s demonstration, failing to reflect the user’s real inten-
tion (i.e., copying all Gateways, no matter how many there
are). However, from List 4, we can see that operations (5, 6)
and (7, 8) have exactly the same meaning and the same pur-
pose (i.e., adding a new Gateway in the new Site and setting
its name to be the name of an existing Gateway being copied).
In fact, only one set is enough, and we can just repeat their
execution according to the number of available Gateways in
the Site being copied. Therefore, to solve the problem, we
implemented the idea that if certain operations need to be
generic (i.e., an operation needs to be iterated and repeat-

edly executed for different times according to the number of
available elements), a demonstration only needs to be done
once, followed by clear identification of the operation(s) as
generic and repeatable.

Figure 11 shows the generic operations identification dia-
log. It simply lists all the operations performed during the
demonstration process. Users may identify the generic oper-
ations by selecting the checkbox. The new MT-Scribe infer-
ence engine will then mark the operations accordingly, and
repeat them in the pattern execution according to the specific
model instance. For example, to solve the problem in Exam-
ple 3.2, instead of performing the operations listed in List 4,
the user should demonstrate the tasks as specified in List 5.

123

Author's personal copy

Y. Sun et al.

Fig. 11 Generic operations identification dialog

List 5 Demonstrate generic operations only once

Sequence Operation performed

1 Add a new Site in EQALRoot

2 Set Site.name = Site1.name

3 Add an EventChannel in the new Site

4 Set EventChannel.name = Site1.EventChannel.name

5 Add a Gateway in the new Site

6 Set Gateway.name = Site1.Gateway1.name

After performing the above demonstration, the user must
then mark operations 5 and 6 as generic (as shown in
Fig. 11). This sequence of demonstration and operation revi-
sion actions will generate a generic transformation pattern
that is capable of replicating any Sites correctly, independent
of the number of Gateways. With these enhancements, users
continue to work at the model instance level when demon-
strating the generic operations.

An enhanced attribute refactoring editor In the earlier ver-
sion of MT-Scribe, we implemented an attribute refactoring
editor, which allowed users access to all the attributes existing
in the current model instance. Through this editor, users could
calculate the needed attributes through arithmetic or string
computations during the demonstration (e.g., users could
just click on a certain attribute, retrieve the value, type the
computation, and calculate the new value). All of the meta-
information and computation details are stored in the inferred
transformation. For instance, to set the capacity of the new
Site to be two times the capacity of Site1 being copied, the
user just clicks on the capacity of the Site being copied,
and retrieves its current value (e.g., 100). Then, the user can
type “/2” and click on “Calculate,” the result being that 50 is

displayed and assigned as the capacity of the new Site, while
the computation “NewSite.capacity = Site1.capacity / 2” is
stored in the transformation pattern.

In order to enhance the attribute editor, new func-
tions have been added. More diverse expressions (e.g.,
subString(), indexOf()) can be used to specify the
computation. In the new implementation of MT-Scribe, we
applied the dynamic language Groovy [16] to parse and cal-
culate the expressions. All of the Java expressions and func-
tions supported by Groovy may be used in the attribute com-
putation. Moreover, user input is also enabled in the attribute
editing process. If a certain value is independent of any exist-
ing attributes and should be input by users, they can create
a name and give its value in the demonstration, indicating
that this is an input value, which is then visible in the rest
of the demonstration. Later, when executing this pattern, the
inference engine will automatically prompt an input box to
ask the user to specify the value of this name. Thus, with
the enhanced attribute refactoring editor, users have more
options to specify and edit the attribute transformation in the
demonstration of the scalability process.

An enhanced pattern execution controller Users can select
the pattern in the dialog to execute an inferred transforma-
tion pattern from the repository. With the enhanced execution
dialog, not only the selection of multiple patterns at the same
time is enabled, but also the total number of times for exe-
cuting a selected pattern(s) can be specified. The benefit is
that users can separate a complex scalability task into several
subtasks, and generate several patterns, then execute them all
together in sequence. The model can then be scaled by execut-
ing the patterns for any number of times desired. In the next
section, we illustrate how these new features work together
to address the three model scalability examples presented in
Sect. 3.

5 Automated model scalability case studies

In this section, we show how the concepts of MTBD can
address the needs of the three motivating examples presented
in Sect. 3. To minimize the effort of performing a scalability
demonstration, we focus on a base model with a small number
of elements and demonstrate how to scale it by one degree
(e.g., scale a SRN model from two events to three events;
scale an EQAL model from three event services to four ser-
vices). Then, by executing the inferred transformation pat-
tern for any number of times, the model can be scaled to the
desired state. In other words, the guidance of the approach can
be summarized as “demonstrate once, scale multiple times.”

Given a model scalability task, the main steps of a solu-
tion are as follows: (1) analyze the process of scaling the
model by one degree, so that the minimum and generalized

123

Author's personal copy

A demonstration-based model transformation approach

operations needed by the scaling scenario can be clearly iden-
tified; (2) perform the demonstration of scaling the model by
one degree; (3) specify preconditions and identify generic
operations in the user refinement step; (4) scale the model to
the desired state by executing the generated pattern for the
desired number of times.

Based on the new extended MTBD framework shown
in Fig. 9, a complete iteration using MTBD to solve a
model scalability task is as follows. First, users start with
the demonstration to simulate the one degree scaling task
(User Demonstration). During the demonstration, users are
expected to perform operations not only on adding or repli-
cating model elements and connections, but also on their
attributes (Enhanced Attribute Editing). At the same time,
the event listener monitors all the operations occurring in the
model editor and collects the information for each operation
in sequence (Operation Recording). After the demonstration,
the engine optimizes the recorded operations to eliminate any
duplicated or meaningless actions (Operation Optimization).
With an optimized list of recorded operations, the transfor-
mation can be inferred by generalizing the behavior in the
demonstration (Pattern Inference). Users are also enabled
to refine the generated transformation pattern by providing
more feedback for the precondition of the desired trans-
formation scenario from two perspectives—structure and
attributes, or identifying generic operations to be executed
repeatedly according to the available model elements and
connections (User Refinement). After the user refinement,
the transformation pattern will be finalized and stored in
the pattern repository for future use (Pattern Repository).
The final patterns in the repository can be executed on any
model instances. The execution starts with matching the pre-
condition in the new model instance and then carrying out
the transformation actions on the matched locations of the
model (Pattern Execution). The MTBD inference engine also
validates the correctness of the models after each execution
process (Correctness Checking). Users can choose where to
execute the pattern, a sequence of patterns to execute, and
the execution times (Execution Control).

The remainder of this section provides solutions to the
scalability examples of Sect. 3 using the new additions to
MT-Scribe. Video demonstrations of each of the examples
in this section are available at the MT-Scribe web page [24].
At the end of this section, we also briefly present the main
implementation challenges and approaches used in the tool.

5.1 Scaling SRN models

By analyzing the scalability needs of Example 3.1, the task
of adding one more event type to an existing SRN model can
be divided into the following three sub-tasks, as shown in
Fig. 12:

t1. Create a new set of places, transitions, and connections
for the new event type. Specify proper names for each
element based on the name of the event.

t2. Create the TStSnp and TEnSnp snapshot transitions and
the SnpInProg snapshot place, as well as the associated
connections.

t3. For each pair of <existing snapshot place, new snap-
shot place>, create two TProcSnp transitions and connect
their SnpInProg places to these TProcSnp transitions.

To provide this demonstration, we choose the two-event
SRN model as shown in the top of Fig. 1. Then, we manu-
ally edit the model and demonstrate the three sub-tasks. To
demonstrate t1, the operations identified in List 6 are per-
formed.

Operation 2 is used to manually create a name for a certain
value, which can be reused later in the rest of the demonstra-
tion to setup the desired name for each element (e.g., the new
event is called “3,” so the places and transitions are named
as “A3,” “B3,” “Sn3,” etc.). The operation also indicates that
the value of this name should be given by the user, which will
invoke an input box when the final generated transformation
pattern is executed on other model instances. When setting
up the attribute in operations 3, 5, 7, 9, 11, users just need to
give the specific composition of the attributes by using the
artificial names and constants, or simply select an existing
attribute value in the attribute refactoring editor. After apply-
ing these operations, the top model will have a new event
type, as shown in Fig. 12 (sub-task 1).

To demonstrate t2, the necessary snapshot places and tran-
sitions in sub-task 2 are added for the new event type by
performing the operations indicated in Fig. 12. Figure 12
(sub-task t2) shows the model after these operations.

To demonstrate t3, two snapshot transitions for each
<existing snapshot place, new snapshot place> are created.
This sub-task involves using generic operations mentioned
in Sect. 4.3, because the number of existing snapshot places
may vary in different model instances. This number will also
increase after each scaling process. Therefore, in the demon-
stration, users only need to create two snapshot transitions
for just one set of <existing snapshot place, new snapshot
place>, followed by identifying these operations as generic
after the
demonstration, so that the inference engine will generate
the correct transformation pattern to repeat these operations
when needed. The operations performed are shown. We select
SnpLnProg2 as the existing snapshot place and demonstrate
the creation of snapshot transitions TProcSnp2,3 and TProc-
Snp3,2.

When specifying the name attributes, complex String
composition can be given using the Java API, as done in
operations 29 and 31 (the only concept that the user needs to

123

Author's personal copy

Y. Sun et al.

Fig. 12 The process of scaling a SRN model from two events to three events

List 6 Operations for sub-task t1 of Example 3.1

Sequence Operation performed

1 Add a Transition in SRNRoot

2 Create an artificial name with the
value: EventName = “3”

3 Set the newTransition.name = “A”
+ EventName = “A3”

4 Add a Place in SRNRoot

5 Set the new Place.name = “B”
+ EventName = “B3”

6 Add a Transition in SRNRoot

7 Set the new Transition.name = “Sn”
+ EventName = “Sn3”

8 Add a Place in SRNRoot

9 Set the new Place.name = “S” + EventName = “S3”

10 Add a Transition in SRNRoot

11 Set the new Transition.name = “Sr”
+ EventName = “Sr3”

12 Connect SRNRoot.A3 and SRNRoot.B3

13 Connect SRNRoot.B3 and SRNRoot.A3

14 Connect SRNRoot.B3 and SRNRoot.Sn3

15 Connect SRNRoot.Sn3 and SRNRoot.S3

16 Connect SRNRoot.S3 and SRNRoot.Sr3

17 Connect SRNRoot.A3 and SRNRoot.B3

understand is the meaning of subString). After the demon-
stration is completed and generic operations are identified
in the user refinement step (i.e., checking the generic opera-
tions in the dialog as shown in Fig. 11), the inference engine
automatically infers and generates the transformation pat-
tern. After the inferred transformation is saved, a user may
select any model instance and a desired transformation pat-
tern, and the selected model will be scaled by adding a new
event type. An execution controller has been implemented
to enable execution of a pattern multiple times. The bottom
of Fig. 1 is the result of adding two event types using the
inferred pattern (Lists 7, 8).

5.2 Scaling the EQAL models

Example 3.2 focuses on increasing event services. The scal-
ing process of adding one more event service includes four
sub-tasks, as illustrated in Fig. 13:

t1. Add a new Gateway to each original Site, and connect it
to its EventChannel.

t2. Add a new Site, containing an EventChannel, EventSup-
plier, EventConsumer, EventTypeRefs, Gateways, and
necessary connections.

123

Author's personal copy

A demonstration-based model transformation approach

List 7 Operations for sub-task t2 of Example 3.1

Sequence Operation performed

18 Add a SnpPlace in SRNRoot

19 Set the newSnpPlace.name= “SnpLnProg”
+EventName = “SnpLnProg3”

20 Add a SnpTransition in SRNRoot

21 Set the new SnpTransition.name = “TStSnp”
+ EventName = “TStSnp3”

22 Add a SnpTransition in SRNRoot

23 Set the newSnpTransition.name = “TEnSnp”
+ EventName = “TEnSnp3”

24 Connect StSnpSht and TStSnp3

25 Connect TStSnp3 and SnpLnProg3

26 Connect SnpLnProg3 and TEnSnp3

27 Connect TEnSnp3 and StSnpSht

t3. Make connections from the EventChannel in the new Site
to each new Gateway in other Sites.

t4. Make connections from the EvenChannel in each original
Site to a new Gateway in the new Site.

We give the demonstration on the model instance shown
in the top of Fig. 2. The first sub-task t1 is to add a new Gate-
way to each original Site and connect it to the EventChan-
nel. Obviously, this is another case of a generic opera-
tion, because the number of current existing Sites is unfixed
(e.g., there are three Sites in this case, but there could be
more or less in other models). Therefore, in the demonstra-
tion, we only demonstrate adding one Gateway and make
the connection in one of the Sites, and then, identify them
as generic. The operations performed for t1 are shown in
List 9.

To demonstrate t2, we need to create a new Site. Again,
adding one Site and its EventChannel, EventSuppiler, Event-
Consumer, and EventTypeRefs are only needed once for each
scaling process, while adding new Gateways and connecting
them to the EventChannel in the new Site should be generic
and correspond to the number of existing Gateways in the

original Sites. List 10 shows the operations performed to add
a new Site and its internal structure.

To demonstrate t3, multiple connections have to be made
to connect the new EventChannel in the new Site to each
new Gateway in the other Sites. In this step, a user should
not only demonstrate a single generic connecting operation,
but also give additional constraints on the source and tar-
get elements of this connection, because there are so many
EventChannels and Gateways available (List 11). Without a
user’s restriction, the inference engine may choose the wrong
source and target to make the connection when the pattern
is executed. The precondition on the source EventChannel is
that it initially has no outgoing and incoming connections,
because it is a newly created EventChannel in the new Site.
The extra precondition on the target Gateway is that it has
only one outgoing and no incoming connections.

The final sub-task t4 is to connect each original EventChan-
nel to a new Gateway in the new Site. Again, the Gateway
in the new Site should have only one incoming connection
from its own EventChannel (List 12).

After the demonstration, generic operations are identi-
fied, and preconditions are given in the user refinement step
through the interface shown in Fig. 10. Users give the precon-
ditions to the elements he or she just touched in the demon-
stration, without being exposed to any metamodel informa-
tion. The model can be scaled by adding any number of new
Sites by applying the pattern multiple times. The bottom of
Fig. 2 is the result of applying the inferred pattern to scale
the model by adding three new event services.

5.3 Scaling the C2M2L models

Replicating a Node in Example 3.3 includes two sub-tasks:

t1. Replicate the overloaded Node, and balance the CPU-
Load by setting the CPULoad attribute for both the new
Node and the original Node.

t2. Replicate all the NodeServices contained in the original
Node to the new Node.

List 8 Operations for sub-task
3 of Example 3.1

* Represents generic operations
to be identified

Sequence Operation performed

28* Add a SnpTransition in SRNRoot

29* Set the newSnpTransition.name = “TProcSnp” + SnpLnProg2.name.subString(9) + “,”
+ EventName = “TProcSnp” + “2” + “,” + “3” = “TProcSnp2,3”

30* Add a SnpTransition in SRNRoot

31* Set the newSnpTransition.name = “TProcSnp” + EventName + “,” + SnpLnProg3.
name.subString(9) = “TProcSnp” + “3” + “,” + “2” = “TProcSnp3,2”

32* Connect SnpLnProg2 and TProcSnp2,3

33* Connect TProcSnp2,3 and SnpLnProg3

34* Connect SnpLnProg3 and TProcSnp3,2

35* Connect TProcSnp3,2 and SnpLnProg2

123

Author's personal copy

Y. Sun et al.

Fig. 13 The process of scaling an EQAL model from three event services to four

List 9 Operation for sub-task t1 of Example 3.2

Sequence Operation performed

1* Add a Gateway in Site1

2* ConnectSite1.EventChannel to Site1.Gateway

* Represents generic operations to be identified

Replicating a model element involves creating the same
type of element and setting up the same attribute values.
To demonstrate t1, we can create one Node and set all its
attributes to be the same as those in the original overloaded
Node, except CPULoad (List 13). An important set of precon-
ditions should be specified to ensure that the Node is actually
overloaded, which in this case occurs when the CPULoad is
greater than 100 and CPULoadRateOfChange is greater than
10.

To demonstrate t2, because the number of NodeSer-
vices in a Node varies, the operations of replicating the
NodeService should be generic and demonstrated only once
(List 14). The generated pattern can be executed by cloud

List 10 Operations for sub-task t2 of Example 3.2

Sequence Operation performed

3 Add a new Site in EQALRoot

4 Add an new EventChannel in Site

5 Add a new EventSupplier in Site

6 Add a new EventConsumer in Site

7 Add a new EventTypeRef in Site

8 Add a new EventTypeRef in Site

9 Connect Site.EventSupplier to Site.EventTypeRef

10 Connect Site.EventConsumer to Site.EventTypeRef

11 Connect Site.EventSupplier to Site.EventChannel

12 Connect Site.EventConsumer to Site.EventChannel

13∗ Add a new Gateway in Site

14∗ Connect Site.EventChannel to Site.Gateway

computing administrators to detect the overloaded Nodes
automatically and replicate the necessary number of new
ones.

123

Author's personal copy

A demonstration-based model transformation approach

List 11 Operations for sub-task t3 of Example 3.2 (“p” represents the
precondition)

Sequence Operation performed

15* Connect Site.EventChannel and Site1.Gateway
p1Site.EventChannel.outgoingConns = 0
p2Site.EventChannel.incomingConns = 0
p3Site1.Gateway.outgoingConns = 0
p4Site1.Gateway.incomingConns = 1

List 12 Operations for sub-task t4 of Example 3.2

Sequence Operation performed

16* Connect Site1.EventChannel and Site.Gateway
p1Site.Gateway.outgoingConns = 0
p2Site.Gateway.incomingConns = 1

5.4 Implementation challenges

The implementation of MTBD is realized in MT-Scribe [24],
which is an Eclipse plugin based on GEMS [11]. With the
main functionalities of MTBD being the specification of a
model transformation and the execution of a model transfor-

mation, the main challenges in the implementation of MT-
Scribe are how to preserve all the information about precon-
dition and transformation actions in a pattern and how to
match the pattern in order to carry out the execution.

GEMS provides a set of rich APIs to access and manip-
ulate the model, as well as several event listeners to capture
the actions performed by the user in the editing environment,
so that we can directly record all the needed information
about a demonstration. The inference process takes the list
of recorded operations as the input and generates two tables
as the output of the initial transformation pattern. The first
table records the precondition, with the key of the table as the
required model element with its containment relationship as
shown in the left of List 2 and the value as its corresponding
metatypes. This table defines the required structural precon-
dition, and the attribute preconditions for each element are
converted as a list attached to each table entry. The transfor-
mation actions are specified in the second table in sequen-
tial order, with the key as the operation type and the value
to be the required operands based on the precondition table
entries. The two tables correlate with each other and serve as
the representation for the transformation pattern during the
whole specification process. With the new inputs taken from
the user refinement step, the associated table entries will be
updated or extended accordingly.

List 13 Operations for sub-task t1 of Example 3.3

Sequence Operation performed

1 Add a Node in C2M2LRoot

2 Set Node.Name = PetStoreWebTierInstance1.Name = “PetStoreWebTierInstance1”

3 Set Node.AMI = PetStoreWebTierInstance1.AMI = “ami-45e7002c”

4 Set Node.Annotation = PetStoreWebTierInstance1.Annotation = “WebTier for PetStore”

5 Set Node.HeartbeatURI = PetStoreWebTierInstance1.HeartbeatURI = “http://ps01.aws.amazon.com/hb”

6 Set Node.HostName = PetStoreWebTierInstance1.HostName = “http://ps01.aws.amazon.com/hb”

7 Set Node.IsWorking = PetStoreWebTierInstance1.IsWorking = true

8 Set PetStoreWebTierInstance1.CPULoad (old) = PetStoreWebTierInstance1.CPULoad (old) / 2 = 105 / 2 = 52.5

9 Set PetStoreWebTierInstance1.CPULoad (new) = PetStoreWebTierInstance1.CPULoad (old) = 52.5
p1PetStoreWebTierInstance1.CPULoad (old) > 100
p2PetStoreWebTierInstance1.CPULoadRateOfChange (old) > 10

List 14 Operations for sub-task t2 of Example 3.3

Sequence Operation performed

10* Add a NodeService in the new C2M2LRoot.PetStoreWebTierInstance1

11* Set NodeService.Name = PetStoreWebTierInstance1.BootstrapWarCopyFromS3.Name = “BootstrapWarCopyFromS3”

12* Set NodeService.ResponseTime = PetStoreWebTierInstance1.BootstrapWarCopyFromS3.

ResponseTime =0.14

13* Set NodeService.ResponseTimeRateOfChange = PetStoreWebTierInstance1.BootstrapWarCopyFromS3.

ResponseTimeRateOfChange = 0.001

123

Author's personal copy

http://ps01.aws.amazon.com/hb
http://ps01.aws.amazon.com/hb

Y. Sun et al.

The finalized pattern (i.e., two tables) is persisted by serial-
izing the table objects so that they can be loaded directly into
the execution engine later. The execution engine is respon-
sible for a series of tasks: (1) load the pattern, (2) match
the precondition, (3) execute each transformation action and
check the correctness, and (4) rollback and restore the initial
state if an error occurs. The main challenge lies on the precon-
dition matching process. We traverse all the available model
elements and connections in the current model instance and
use each of them as the candidate for the required element
in the precondition table. The candidate is matched when its
metatype and the containment relationship conform to the
structural precondition, as well as when the list of attribute
preconditions are satisfied. If there is no match, a backtrack-
ing algorithm is applied to try out the next combination. The
actual execution of each action is implemented using the
Command pattern so that undo can be performed easily if a
rollback is needed.

6 Evaluation

In this section, the extended MTBD approach is first evalu-
ated using the three desired characteristics of model scalabil-
ity described in [22]. Then, we compare scalability scenarios
using traditional model transformation languages to that of
the MTBD approach advocated in this paper. Finally, the
main limitations of MTBD are discussed at the end of this
section.

6.1 Evaluation on the desired characteristics of a replication
approach

This section compares the scalability solution offered by
MTBD to a set of proposed desiderata described initially
in [22].

Retain the benefits of modeling The power of modeling
comes from the ability to explore various design alterna-
tives and perform system analysis or development at a higher
level of abstraction. A model scaling technique should not
inhibit this ability. For instance, a model translator can trans-
late a model into some other artifacts (e.g., code, simulation
scripts). Instead of scaling the original model, some scala-
bility approaches may integrate the scalability task into the
generation of final artifacts or other intermediate representa-
tions. The disadvantage of such an approach is that models
are not the catalyst for representing the scalability result (i.e.,
the scalability is not represented directly in a model, but in
the generated artifact), which inhibits the benefit of using
models. By contrast, the MTBD approach directly operates
on model instances, retaining all of the benefits of modeling.

General across multiple modeling languages This charac-
teristic ensures that the scaling approach should be applicable
to different modeling languages. The MTBD implementation
is a plug-in to GEMS, and triggered in the model editor. Thus,
any modeling language defined in GEMS that can be edited in
the model editor can use MT-Scribe to address the scalability
transformation problems, which means MTBD is a general
solution that can be applied across multiple domain-specific
modeling languages.

Flexible to support user extensions The desired scaling
process should allow alteration in the semantics of the repli-
cation more directly using a language that can be manipulated
easily by an end user. The current generated transforma-
tion pattern is not editable, and therefore does not allow
direct extension or reuse on an existing pattern. However,
we believe that the user focus of MTBD allows a user to
re-demonstrate a new task in a manner that is better than
editing existing model transformation code. If the end user is
not familiar with model transformation languages, the idea
of user extension by altering the model transformation is not
even possible.

6.2 The benefits of automating model scalability
using MTBD

The benefits of MTBD can be compared with writing model
transformation rules to solve the same problems, as was done
in [22]. In our earlier work, we used a model transformation
engine called C-SAW, which processed a transformation lan-
guage called the Embedded Constraint Language (ECL) [13].
We used ECL to perform the same model scalability tasks that
were introduced in Sects. 3.1 and 3.2 (in this paper, Sect. 3.3
describes an example that was not considered in the previous
scalability studies that focused on using MTLs). Although
ECL is specific to model transformation tasks and is at a
higher level than general-purpose programming languages,
its usage still requires that a user learn the syntax of the lan-
guage. The use of ECL also requires a deep understanding
of the metamodel for the domain being scaled. Additionally,
ECL requires understanding of basic programming concepts
such as variable declaration, branch statements, and even
recursion. Thus, for a general domain expert who does not
have any programming language knowledge or experience,
ECL is often too challenging to use as a model scalability
solution. In fact, our understanding of this problem came
after performing the work described in [22], leading us to
the realization that a new automation approach was needed,
which motivated our work on MTBD.

Comparatively, MTBD does not use any model transfor-
mation language. Users only need to perform a single case
of the scaling process on a concrete model instance. Every
operation or user refinement is done at the concrete model

123

Author's personal copy

A demonstration-based model transformation approach

Fig. 14 An excerpt of a transformation rule written in ECL to accomplish sub-task t1 of Example 3.2

Fig. 15 An excerpt of transformation rule written in ECL to enable adding a Gateway to each existing Site, while controlling the number of
execution times

instance level, not at the metamodel level, as needed with
traditional transformation languages. MTBD enables users
to solve complex scaling problems while being ignorant of
the underlying metamodel definition.

To better compare the efforts of automating model scala-
bility tasks using MTLs and MTBD, Fig. 14 shows part of
the model transformation rules written in ECL to implement
sub-task t1 of Example 3.2. To add a Gateway, the neces-
sary objects should be declared first, followed by calling cre-
ational APIs to construct the correct type of elements and the
connections. However, the same task could be accomplished
by only two operations in the demonstration, as shown in
List 9.

In addition, to add the Gateway to each existing Site, and
control the number of execution times, recursive calls are
used in the ECL transformation rules as shown in Fig. 15. In
MTBD, a user simply identifies the two operations in List 9 as
generic after the demonstration. The inferred transformation
can then be executed as many times as needed.

We have not conducted a formal human-based user study
on the comparison between the two approaches. However,

Table 1 The comparison of effort to solve model scalability tasks using
MTBD and a model transformation language (ECL)

Model scalability
example

MTBD ECL rules

Example 3.1 35 operations 170 SLOC

1 generic operation refinement

Example 3.2 16 operations 124 SLOC

2 precondition refinement

1 generic operation refinement

Table 1 lists some of the results of the comparative effort,
indicating that [22] used over 170 lines of ECL code to
address Example 3.1. We performed the same task with
MTBD by demonstrating 35 editing operations on a con-
crete model instance, and identifying one generic operation.
Similarly, the solution of Example 3.2 using ECL requires
32 lines of ECL [14], while our MTBD-based scalability
solution required 16 direct editing operations, one generic
operation identification and two precondition refinements.

123

Author's personal copy

Y. Sun et al.

Table 2 The comparison of development time to solve model scala-
bility tasks using MTBD and a model transformation language (ECL);
performed by experts in both cases

Example MTBD ECL rules

Example 3.1 1.5 s for demonstration 30 min

1 min for refinement

Example 3.2 40 s for demonstration 25 min

2 min for refinement

To better measure the effort, we asked two users to accom-
plish the two tasks using these two approaches so that we
could measure the time spent using each approach. The user
who used MTBD was a trained MTBD user, while the other
user who wrote the transformation rules is one of the ECL co-
authors. The result in Table 2 shows that using MTBD to solve
these two examples is 10 times faster than writing C-SAW
rules. This fast development cycle enables users to quickly
test patterns and make modifications. For instance, in order to
determine whether a generated pattern is too general or not,
users need to execute the pattern and test the result. In some
cases, modifications have to be made to fix errors followed by
re-executing the new pattern. MTBD shortens these devel-
opment iterations. This comparison is made between com-
puter scientists who actually understand both approaches; the
MTL approach with C-SAW is not even possible with most
end users who are not computer scientists.

Table 3 describes the prerequisite knowledge for each
approach. For MTBD, the development environment is inte-
grated in the modeling tool itself; thus, users only need to
know a few additional buttons to use MTBD. The demonstra-
tion is performed using the same model editing operations,
so the only new things to learn are the UIs for pattern refine-
ments. For ECL, the development environment is a plug-in

to GME [21], and it requires a regular textual editor to spec-
ify the transformation rules. Learning ECL requires learning
the new syntax and semantics of the language, including a
number of new keywords, program structures, and functions.
Finally, we identified the possible errors that could happen
in the development process using the two approaches. For
MTBD, users might perform incorrect editing operations or
give invalid expressions in the precondition specification and
refinement. The base pattern and minimum preconditions are
automatically generated at the background, so there is no way
that users can make mistakes on this part. For C-SAW or
nearly any other textual or visual transformation program-
ming language, the transformation rules could suffer from
general programming issues such as the syntax errors and
semantics bugs in the logical expression of the transforma-
tion task.

6.3 Current limitations of MTBD and future work

When designing and implementing MT-Scribe, a tradeoff
existed between simplicity and functionality, because a user’s
demonstration and refinement are not as expressive and accu-
rate as the same transformation task written in an MTL. Some
tasks could be specified easily by a transformation language,
but turn out to be very difficult to demonstrate. For instance,
scaling an element having the maximum value of a specific
attribute is currently not possible in MT-Scribe. The same
task could be implemented by function calls, selection, or
iteration facilities available in most MTLs. Although these
kinds of functions could be extended to MTBD by designing
some other user-friendly refinement interfaces, its simplicity
after adding many user feedback steps would probably be
undermined (Table 4).

Therefore, since it is not easy to make MTBD a fully
complete replacement to a well-defined model transforma-

Table 3 The comparison of
prerequisite knowledge to solve
model scalability tasks using
MTBD and a model
transformation language (ECL)

MTBD ECL rules

1. MTBD development environment 1. ECL syntax and semantics
including 12 keywords, 5 main
program structure, and 4
functions

2. How to demonstrate by model editing

3. How to perform refinement (i.e., the usage of refinement UIs) 2. GME development environment

Table 4 The comparison of
possible errors to solve model
scalability tasks using MTBD
and a model transformation
language (ECL)

MTBD ECL rules

1. Demonstrate with the wrong editing operation 1. General programming language syntax error

2. The incorrect specification on the attribute
precondition expressions or generic operations

2. Semantics error or bugs on the transformation logic

123

Author's personal copy

A demonstration-based model transformation approach

tion language to support all possible model scalability tasks,
our initial focus has been toward making MT-Scribe prac-
tical for most scenarios. When encountering difficulties in
using MTBD to solve common model scalability problems
in practice, the most needed and essential features and func-
tions were selected and added into MT-Scribe by design-
ing user-friendly and user-centric interfaces and mechanisms
that are capable of implementing the desired function. By
such an incremental and selective extension process, we
believe a proper balance can be achieved between simplicity,
functionality, and practicality.

In addition, the current inference is based on a single
demonstration from users, rather than a series of demonstra-
tions for different scenarios. Although a single demonstration
requires much less effort from users, it often contains limited
information about the desired scenario, restricting the accu-
racy of the transformation pattern being inferred (e.g., nega-
tive preconditions cannot be inferred from a single positive
demonstration). Thus, the desired number of demonstrations
given by users as input to the inference engine is another
issue that needs to be investigated further. Apart from the
insufficient information on a precondition in a single demon-
stration, the generic operation refinement step also has some
limitations. In the current execution engine, we have explic-
itly excluded the container elements from the candidate pool
after each matching process in order to avoid the infinite loop
of adding new elements when the add operation is identified
as generic. The drawback is that a single generic adding oper-
ation cannot be used to add multiple elements in the same
container. Additionally, the generic operation will be exe-
cuted until no more operands are available, which means that
we cannot control the generic operations to be matched and
executed for a certain number of times, or based on certain
conditions.

The correctness of the inferred transformation pattern cur-
rently depends on the correctness of the demonstration. An
issue has emerged on how to help users to make sure whether
the generated pattern is desired. Finally, the question about
how to debug the transformation process at an end-user level
is another task to be considered in order to ensure the quality
of the models after being scaled. We have already initiated
a new line of work that has developed a prototype debugger
for MT-Scribe [35].

The limited evaluation and assessment of the approach is
also an area of future work that we are planning to explore.
The comparisons made in Sect. 6.2 were performed with just
two users who were experienced in both techniques. A more
detailed study between end users in targeted domains, who
may also not be computer scientists, is also needed to assess
the additional benefits of MTBD as applied to scalability
tasks. Although the scalability tasks described in this paper
are generally not even possible with end users using tradi-
tional approaches, we would still like to understand more

of the gaps in the capability of MT-Scribe to better assist
such users. To this end, we have planned a new experimental
human-based study that will be reported on the MTBD web
page when completed [24].

7 Conclusion

This paper introduced a demonstration-based model transfor-
mation approach to automate model scalability tasks in order
to support software evolution. Compared with our previous
work on using model transformation languages to scale mod-
els [14,22], we believe that MTBD offers several advantages
supporting ease of use for end users who are domain experts,
but do not have programming experience. The demonstra-
tion focus allows users to be ignorant of both the details of
the transformation language and the structure of the meta-
model for the language being used. The paper presented a
new approach to MTBD and summarized the changes that
were needed to evolve a tool (MT-Scribe) that supported an
earlier version of our approach to address challenges related
to precondition extraction, attribute refactoring, and transfor-
mation site matching. Three case studies were used to demon-
strate the application of our improved technique in order to
address a variety of scalability scenarios, as well as showing
the new extensions made in MT-Scribe. We believe that scal-
ability issues will become more prominent as the concepts of
MDE are integrated further into development processes. The
key contribution of this paper is an approach for helping to
overcome the challenges associated with scaling models in
MDE processes. Of course, this approach is also applicable
in other model transformation areas such as aspect-oriented
modeling and model refactoring. However, we believe that
highlighting model scalability helps to promote the overall
benefits of MDE for adoption in new domains that require
frequent engineering changes to be explored in the context
of scalability.

Acknowledgments This work was supported by NSF CAREER
Award CCF-1052616.

References

1. Agrawal, A., Karsai, G., Lédeczi, Á.: An end-to-end domain-driven
software development framework. In: Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA): Domain-
driven Track, pp. 8–15, Anaheim, CA (2003)

2. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.
amazon.com/ec2/ (2012)

3. Balasubramanian, D., Narayanan, A., Buskirk, C., Karsai, G.: The
graph rewriting and transformation language: GreAT. Electron.
Commun. Eur. Assoc. Softw. Sci. Technol. 1, 8 (2006)

4. Balogh, Z., Varró, D.: Advanced model transformation language
constructs in the VIATRA2 framework. In: Symposium on Applied

123

Author's personal copy

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

Y. Sun et al.

Computing (SAC), pp. 1280–1287, Dijon, France, April 2006
(2006)

5. Bondi, A.: Characteristics of scalability and their impact on per-
formance. In: 2nd International Workshop on Software and Perfor-
mance, pp. 195–203, Ottawa, Ontario, Canada (2000)

6. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel,
G., Retschitzegger, W., Schwinger, W.: An example is worth a
thousand words: composite operation modeling by-example. In:
International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pp. 271–285, Spring-Verlag, LNCS 5795,
Denver, CO., October 2009 (2009)

7. Brosch, P., Seidl, M., Wieland, K., Wimmer, M., Langer, P.: The
operation recorder: specifying model refactorings by-example. In:
International Conference on Object-Oriented Programming Sys-
tems Languages and Applications (OOPSLA): Tool Demonstra-
tion, pp. 791–792, Orlando, FL, October 2009 (2009)

8. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006)

9. Damm, W., Harel, D.: LSCs: breathing life into message sequence
charts. Formal Methods Syst. Des. 19(1), 45–80 (2001)

10. Edwards, G., Deng, G., Schmidt, D., Gokhale, A., Natarajan, B.:
Model-driven configuration and deployment of component middle-
ware publish/subscribe Services. In: Generative Programming and
Component Engineering (GPCE), pp. 337–360, Vancouver, BC,
October 2004 (2004)

11. Generic Eclipse Modeling System (GEMS). http://www.eclipse.
org/gmt/gems/

12. Gray, J., Zhang, J., Lin, Y., Wu, H., Roychoudhury, S., Sudarsan,
R., Gokhale, A., Neema, S., Shi, F., Bapty, T.: Model-driven pro-
gram transformation of a large avionics framework. In: Generative
Programming and Component Engineering (GPCE), pp. 361–378,
Springer, LNCS 3286, Vancouver, BC, October 2004 (2004)

13. Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-
driven engineering. IEEE Comput. Special Issue Model Driven
Eng. 39(2), 51–58 (2006)

14. Gray, J., Lin, Y., Zhang, J., Nordstrom, S., Gokhale, A., Neema, S.,
Gokhale, S.: Replicators: Transformations to Address Model Scal-
ability. In: Proceedings of the International Conference on Model-
Driven Engineering Languages and Systems (MoDELS), pp. 295–
308, Springer, LNCS 3713, Montego Bay, Jamaica, October 2005
(2005)

15. Gray, J., Tolvanen, J., Kelly, S., Gokhale, A., Neema, S., Sprin-
kle, J.: Domain-specific modeling. In: Handbook of Dynamic Sys-
tem Modeling, Chapter 7, pp. 7–1 through 7–20. CRC Press,
Boca Raton (2007)

16. Groovy. http://groovy.codehaus.org/
17. Hayes, B.: Cloud computing. Commun. of the ACM 51(7), 9–11

(2008)
18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model

transformation tool. Sci. Comput. Program. 72(1/2), 31–39
(2008)

19. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-
oriented domain analysis (FODA) feasibility study. Software Engi-
neering Institute, Technical Report CMU-SEI-90-TR21, Carnegie
Mellon University (1990)

20. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T.,
Retschitzegger, W., Schwinger, W., Wimmer, M.: Lifting metamod-
els to ontologies: a step to the semantic integration of modeling lan-
guages. In: International Conference on Model-Driven Engineering
Languages and Systems (MoDELS), pp. 528–542, Springer, LNCS
4199, Genova, Italy, October 2006 (2006)

21. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G.,
Sprinkle, J., Karsai, G.: Composing domain-specific design envi-
ronments. IEEE. Comput. 34(11), 44–51 (2001)

22. Lin, Y., Gray, J., Zhang, J., Nordstrom, S., Gokhale, A., Neema, S.,
Gokhale, S.: Model replication: transformations to address model
scalability. Softw. Pract. Experience 38(14), 1475–1497 (2008)

23. Mens, T., Gorp, P.: A taxonomy of model transformation. Work-
shop on Graph and Model Transformation, vol. 152, pp. 125–142,
Talinn, Estonia (2005)

24. MTBD Project Page. http://students.cis.uab.edu/yusun/mtbd/
25. Muppala, J., Ciardo, G., Trivedi, K.: Stochastic reward nets for

reliability prediction. Commun. Reliab. Maintainab. Serv. 1(2), 9–
20 (1994)

26. OMG, Revised Submission for MOF 2.0 Query/View/
Transformations RFP (ad/2002-04-10), OMG Document ad/2005-
07-01 (2005)

27. Object Management Group, Object Constraint Language Spec-
ification. http://www.omg.org/technology/documents/modeling_
spec_catalog.htm#OCL (2012)

28. Schmidt, D.: Model-driven engineering. IEEE. Comput. 39(2), 25–
32 (2006)

29. Schmidt, D., Stal, M., Rohnert, H., Buschman, F.: Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked
Objects, vol. 2. Wiley, New York (2000)

30. Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw Special
Issue Model Driven Softw. Dev. 20(5), 42–45 (2003)

31. Strommer, M., Wimmer, M.: A framework for model transfor-
mation by-example: concepts and tool support. In: 46th Interna-
tional Conference on Technology of Object-Oriented Languages
and Systems (TOOLS), pp. 372–391, Zurich, Switzerland, July
2008 (2008)

32. Sun, Y., White, J., Gray, J.: Model transformation by demonstra-
tion. In: Model Driven Engineering Languages and Systems (MoD-
ELS), pp. 712–726, Spring-Verlag, LNCS 5795, Denver, CO.,
October 2009 (2009)

33. Sun, Y., White, J., Gray, J., Gokhale, A.: Model-driven automated
error recovery in cloud computing. In: Model-Driven Analysis and
Software Development: Architectures and Functions, IGI Global,
Hershey, PA (2009)

34. Sun, Y., Gray, J., Bulheller, K., von Baillou, N.: A model-driven
approach to support engineering changes in industrial robotics
software. In: Model Driven Engineering Languages and Systems
(MoDELS), pp. 368–382, Springer, LNCS 7590, Innsbruck, Aus-
tria, October 2012 (2012)

35. Sun, Y., Gray, J.: Model transformation by demonstration debug-
ger: end-user support for debugging model transformation exe-
cution. In: European Conference on Modeling Foundations and
Applications (ECMFA), pp. 86–100, Springer, LNCS 7949, Mont-
pellier, France, July 2013 (2013)

36. Varró, D.: Model transformation by example. In: Model-driven
engineering languages and systems (MoDELS), pp. 410–424,
Springer, LNCS 4199, Genova, Italy, October 2006 (2006)

37. Varró, D., Balogh, Z.: Automating model transformation by exam-
ple using inductive logic programming. In: Symposium on Applied
Computing (SAC), pp. 978–984, Seoul, Korea, March 2007 (2007)

38. W3C, XSLT Transformation version 1.0. http://www.w3.org/TR/
xslt (1999)

39. White, J., Czarnecki, K., Schmidt, D., Lenz, G., Wienands, C.,
Wuchner, E., Fiege, L.: Automated model-based configuration of
enterprise java applications. In: Enterprise Distributed Object Com-
puting (EDOC), pp. 301–312, Annapolis, Maryland, October 2007
(2007)

40. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards
model transformation generation by-example. In: Hawaii Inter-
national Conference on System Sciences (HICSS), pp. 285, Big
Island, HI, January 2007 (2007)

123

Author's personal copy

http://www.eclipse.org/gmt/gems/
http://www.eclipse.org/gmt/gems/
http://groovy.codehaus.org/
http://students.cis.uab.edu/yusun/mtbd/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

A demonstration-based model transformation approach

Author Biographies

Yu Sun received his PhD from
the University of Alabama at
Birmingham in 2011. His rese-
arch focuses on model-driven
engineering, and specifically sup-
porting model evolution process
in a user-centric approach. Yu
currently works for a startup
company—PAR Works, as the
director of engineering. The
company provides high-precis-
ion 3D augmented reality tech-
nology for mobile platforms.

Jeff Gray is an Associate
Professor in the Department of
Computer Science at the Uni-
versity of Alabama. He co-
directs the Software Modeling
Lab, which focuses on research
in areas related to model-driven
engineering, DSLS, and software
maintenance. He also conducts
research and outreach in com-
puter science education, with
particular emphasis on grades
K-12.

Jules White is an Assistant
Professor of Computer Science
in the Department of Electri-
cal Engineering and Computer
Science at Vanderbilt Univer-
sity. His research has won 4
Best Paper Awards. He has
also published over 80 papers.
Dr. White’s research focuses on
securing, optimizing, and lever-
aging data from mobile cyber-
physical systems. His mobile
cyber-physical systems research
spans four key focus areas: (1)
mobile security and data collec-

tion, (2) high-precision mobile augmented reality, (3) mobile device
and supporting cloud infrastructure power and configuration optimiza-
tion, and (4) applications of mobile cyber-physical systems in multi-
disciplinary domains, including energy-optimized cloud computing,
smart grid systems, healthcare/manufacturing security, next-generation
construction technologies, and citizen science. His research has been
transitioned to industry, where it won an Innovation Award at CES 2013,
was a finalist for the Technical Achievement at Award at SXSW Inter-
active, and was a top 3 for mobile in the Accelerator Awards at SXSW
2013.

123

Author's personal copy

	A demonstration-based model transformation approach to automate model scalability
	Abstract
	1 Introduction
	2 Related work
	2.1 Traditional model transformation approaches that can support automating model scalability
	2.2 Innovative model transformation approaches that can simplify model scalability tasks

	3 Motivating examples: illustrating model scalability issues
	3.1 Adding new event types: evolving software design models
	3.2 Enlarging event services: evolving software implementation models
	3.3 Replicating overloaded application nodes: evolving software maintenance models
	3.4 Challenges of model scalability current practice

	4 Automating model scalability using MTBD
	4.1 Overview of MTBD
	4.1.1 Operation recording
	4.1.2 Pattern inference
	4.1.3 Manual inference refinement

	4.2 Limitations of original MTBD to support model scalability
	4.3 New extensions and features to MTBD

	5 Automated model scalability case studies
	5.1 Scaling SRN models
	5.2 Scaling the EQAL models
	5.3 Scaling the C2M2L models
	5.4 Implementation challenges

	6 Evaluation
	6.1 Evaluation on the desired characteristics of a replication approach
	6.2 The benefits of automating model scalability using MTBD
	6.3 Current limitations of MTBD and future work

	7 Conclusion
	Acknowledgments
	References

