Supporting Feature Model Configuration using a
Demonstration-based Approach

Yu Sun

Department of Computer and
Information Sciences
University of Alabama at Birmingham
Birmingham, AL 35294

Hyun Cho, Jeff Gray

Department of Computer Science
University of Alabama
Tuscaloosa, AL 35487

Jules White

Department of Electrical and
Computer Engineering
Virginia Tech
Blacksburg, VA 24060

hcho7@crimson.ua.edu

yusun@cis.uab.edu

ABSTRACT

Configuration of feature models in software product-lines
typically involves manipulating a model to modify the feature
selections and analyzing the model to ensure that no configuration
constraints are violated. In order to capture and reuse
configuration knowledge from different users, model
transformation and constraint languages can be used to specify
and automate the constraint checking and model manipulation
processes. However, this approach presents challenges to general
end-users (e.g., domain experts who may not be programmers)
who do not have experience using these languages. This paper
presents a demonstration-based technique to support the capture
and reuse of feature model configurations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features — abstract data types, polymorphism, control structures.

General Terms
Design, Languages

Keywords

Feature Model, Model Transformation By Demonstration

1. INTRODUCTION

Feature models have been widely used to model software product-
line (SPL) variability [1]. A correct variant is configured by
selecting the desired features that satisfy the product requirements
without violating any feature model constraints. Instead of
configuring the whole variant by a single expert, an SPL may
need to be configured collaboratively by different individuals
through a series of feature manipulation and analysis actions. For
instance, an SPL configuration may span multiple engineering
domains, such as hardware and software features, so defining a
complete configuration requires participation of multiple
engineers to make feature selections and perform correctness

checking (e.g., check the cross-tree constraints in a feature model).

In addition, the same part of a configuration may be refined by
different individuals (e.g., senior engineers may address errors or
undesired configurations specified by entry-level engineers).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PLEASE’11, May 22-23, 2011, Waikiki, Honolulu, HI, USA.

Copyright 2011 ACM 978-1-4503-0584-6/11/05... $10.00.

gray@cs.ua.edu

julesw@vt.edu

Based on this collaborative context, a key challenge is that not all
individuals may have the required domain knowledge to
completely configure a variant in a feature model. Moreover, as
individuals join and leave an organization, critical configuration
knowledge may be lost. Therefore, capturing configuration
knowledge from different individuals and supporting feature
model configuration through knowledge reuse is an essential task.

If feature models are created using domain-specific modeling
tools (e.g., GEMS [7]), a simple approach to capture configuration
knowledge is to save representative configuration examples in
individual files or models, which can be reused in other contexts.
However, reusing this type of knowledge is not flexible due to a
lack of automation. Users have to first understand the reference
configuration and then manually perform the necessary
manipulation or analysis on their feature models to duplicate it.
An alternative to automating the capture and reuse of feature
model configuration knowledge is to specify the configuration and
constraint rules using a Model Transformation Languages (MTL)
[3], or constraint language (e.g., OCL). With this approach, the
model editor can check constraints and perform necessary
configuration actions automatically at modeling time when users
are building the configurations. However, the usage of MTLs and
constraint languages requires developers to learn these languages,
which are not typically focused on product-lines, as well as the
related deeper modeling concepts (e.g., understanding technical
details of the metamodel). Such challenges may prevent some
general end-users from capturing and specifying feature model
manipulation and analysis tasks for which they have extensive
domain experience. Similarly, although automated configuration
approaches (e.g., formulations of feature models as a Constraint
Satisfaction Problem - CSP) can provide intelligent support in
feature configuration [6], optimization and error correction, there
are often configuration rules that domain experts do not know
how to formalize using CSP or SAT languages

To overcome these challenges and provide an end-user approach
for capturing feature model configuration rules without learning a
transformation or constraint language, we have investigated the
idea of using Model Transformation By Demonstration (MTBD)
[2] to automatically capture configuration knowledge and
automate the reuse of the captured knowledge.

Digital TV

L] . L] . .
Panel Type Screen Size Refresh Rate 10 Device System Type
- L
LCC LED Plasma 19-26 32-37 4042 46-50 60Hz 120Hz 240Hz 600Hz Input = Output ATSC DvB
Ethernet HDMI USE D-Sub Audio Cptical Digital Audio
Figure 1.A simplified TV feature model
Digital TV
- . - - -
Panel Type Screen Size Refresh Rate 10 Device System Type
. - -
LCD LED Plasma 19-26 | 32-37 40-42 46-50 60Hz | 120Hz 240Hz 600Hz Input Output ATSC DvVB

Ethermet | HDMI USB
Figure 2. A configuration for LCD32_37

D-Sub

Audio

Optical Digital Audio

The goal is to provide an innovative approach in a feature
modeling environment that 1) provides a simple way to specify
how a feature model should be configured in a given context, 2)
can automatically apply captured configuration rules to a
partially configured feature model, and 3) does not require
learning any additional languages, such as a model
transformation language or metamodeling language.

The rest of the paper is organized as follows: Section 2 presents
a motivating example to demonstrate the commonly used
manipulation and analysis in feature model configuration;
Section 3 explains the solution by introducing MTBD with
several examples; Section 4 discusses the advantages of the
approach, as well as the current limitations. Section 5 compares
the related work, and Section 6 offers concluding remarks.

2. MOTIVATING EXAMPLE

As the context for a motivating example, Figure 1 shows a
feature model for the configuration of televisions. This is a
simplified version specifying the main features such as Panel
Type, Screen Size, etc. The feature model is used to make
selections on the features and define the desired configuration
for various types of digital TVs. Figure 2 presents the
configuration for LCD32_37. During the configuration process,
some manipulation and analysis might be performed regularly.

Scenario 1 — Configuration Saving/Loading. A specific digital
TV configuration consists of a unique set of feature selections.
Making a configuration for LED19_26, for example, requires
selecting different features for Panel Type, Screen Size, and
Refresh Rate compared with LCD32_37. Saving a specific
configuration and loading it in the base feature model is
commonly needed in the model editor. The saved configuration
can also represent partial configuration patterns, such as
selecting all required features, or selecting a popular
combination of Screen Size (e.g., 40-42) and Refresh Rate (e.g.,
120Hz).

Scenario 2 - Automatic Constraint Checking. Several
constraints in the digital TV product-line exist. For example, the
Panel Type-Plasma can only apply a Refresh Rate at 600Hz; the

LCD with Screen Size 32-37 cannot use Refresh Rate over
120Hz. During the modeling process, users expect to conform to
all positive and negative constraints. An automatic checking

mechanism can be helpful in assessing configuration
correctness.
Digital TV
Panel Type Screen Size Refresh Rate

o)
()
60Hz 120Hz @ 240Hz 600Hz

Figure 3. An incorrect configuration

LCD LED Plasma 19-26 = 3237 4042 45-50

Scenario 3 — Automatic Error Correction. After a constraint
violation is found, corresponding actions should be performed to
fix the error. For instance, in Figure 3, the LCD with a Screen
Size 32-37 is configured with a Refresh Rate at 240Hz, which is
over the normal range (i.e., 60Hz-120Hz). The most direct
approach to fix this error is to deselect the 240Hz feature to
remove the violation. An automatic error detection and
correction procedure can improve the quality of the
configurations.

3. MTBD AND FEATURE MODELS

Our end-user solution to automate feature model manipulation
and analysis is to use a demonstration-based technique, Model
Transformation By Demonstration (MTBD) [2], which is a new
approach to implement model transformations. The goal of
MTBD is to enable general users (e.g., domain experts) to
specify reusable configuration tasks without knowing model
transformation languages or metamodel definitions. Thus,
instead of manually writing constraint rules or model
transformation rules to specify an automated configuration
process, users can specify these rules by demonstrating the
specific feature configuration process (e.g., select features) on
the feature model and offering feedback on the model to reflect
the desired constraints. A recording and inference engine
captures all feature selections and deselections, generalizes a
user’s intention in a configuration task, and generates a reusable
transformation pattern automatically.

Each configuration task includes a precondition to ensure that
the task is not applied in an incorrect context, and a
transformation that will automatically select/deselect a subset of
the feature in the model. After configuration knowledge is
captured as a reusable task, it can be applied by different domain
experts. For example, a new engineer can use a configuration
task, captured by a senior engineer, to automatically configure a
specific subset of features that he/she is unfamiliar with.
Moreover, an engineer may use a configuration task captured by
an expert from a different domain to automatically configure a
portion of the feature model that is outside of his/her expertise.
We present the main components and steps in MTBD in Section
3.1, followed by an illustration of the idea with several examples
in Section 3.2.

3.1 Introduction to MTBD

Figure 4 is an overview of the MTBD approach, which was
originally presented in [2]. To specify a model transformation,
users first give a demonstration by directly editing a model
instance (e.g., add a feature to a configuration) to simulate a
transformation task. During the demonstration, an event listener
monitors all the operations occurring in the feature model editor
and collects the information for each operation in sequence.
After the demonstration, the engine optimizes the recorded
operations to eliminate any meaningless or useless actions.

With an optimized list of recorded operations, the
transformation can be generalized and inferred. Because MTBD
does not rely on a model transformation language, no specific
transformation rules are generated. Instead, we generate a
transformation pattern<P, T>, where P summarizes the
precondition of a transformation (i.e., where a transformation
applies), and T specifies the actions needed in a transformation
(i.e., how a transformation is performed). For example, a
precondition can specify a set of features that must be selected
or quality attribute values that must be present for a specific
automated configuration to be applied.

The initial pattern inferred is specific to the demonstration and
may not be completely accurate since it is inferred from a
demonstration that may depend on domain information not
related to the features directly manipulated in the demonstration.
Users are allowed to refine the inferred transformation by
providing more feedback for the precondition of the desired
transformation scenario from two perspectives — structure and
attributes. For instance, users can restrict the precondition by
selecting and confirming extra features or relationships between
features in the feature model editor that must be included in the

pattern (e.g., the 240Hz feature must be a child of the Refresh
Rate feature). A new type of operation (Confirm Containment) is
implemented in the editor for this purpose. The refinement on
the attributes can be realized by choosing the element in the
demonstration and typing the specific conditions (e.g., only
select a feature if the refresh rate is “600Hz”). The refined
transformation pattern <P’, T> will be finalized and stored in
the pattern repository for future use.

The final generated patterns can be executed on any feature
model instances that satisfy the required preconditions. The
execution starts with matching the precondition P’ in a model
instance and then carrying out the transformation actions (T) on
the matched locations of the model. When the syntax or
semantics are violated, the execution of each transformation
action will be logged and the model instance correctness
checking is performed after every execution. If a certain action
violates the metamodel definition, all executed actions are
undone and the whole transformation is cancelled. We are
working on a debugging tool as part of MTBD to aid in
identification of errors in the demonstration process.

3.2 Assisting Feature Configuration

To use MTBD to handle common feature model manipulation
and analysis scenarios, we can follow the MTBD steps to
demonstrate the process, refine the pattern, and then execute the
pattern whenever needed.

Supporting Configuration Saving/Loading. As an example,
after understanding how to configure the LCD32_37, we simply
demonstrate the selection process on a base model, by setting
the 15 features to be selected, and change the model shown in
Figure 1 to the new configuration in Figure 2. The recording
engine captures all 15 operations performed, and generalizes an
initial transformation pattern, which contains a minimum
precondition and a set of transformation actions. Figure 5 is an
abstract representation of the generalized pattern. The
precondition is minimum because it only specifies the minimum
number of model elements needed to correctly execute all the
transformation actions with enough operands. In this case, 15
different features are sufficient to guarantee the recorded
actions.

The initial generalized pattern is not accurate because it lacks a
specification of the relationships between all features, as well as
the constraints on the name of each feature. In the user
refinement step, users can provide more feedback to restrict the
generalized precondition. The refinement on the structural
precondition is given by using the Confirm Containment
operation extended in the editor. Users simply choose the
desired model element (e.g., the feature relationship between the
two selected features) in the editor, and choose Confirm
Containment, after which the chosen elements will be included
in the precondition (see Figure 6).

The refinement on the attribute precondition is done through an
attribute precondition dialog, which enables users to select any
model elements in the current precondition, and specify a textual
constraint on its attribute. For example, the root of the feature
model must be “Digital TV,” so we click on the name of the
feature f1, and type == “Digital TV.” Similarly, feature f2 (i.e.,
Panel Type) uses the XOR for composition of its children, so it
is also specified in the dialog. Figure 7 shows the final
transformation pattern after refinement.

Precondition Actions

f1.selected=true
f2.selected=true
f3.selected=true

f1 — f15: Feature f15.selected=true
Figure 5. The initial generalized transformation pattern

Precondition Actions

- fl.selected=true
% f2.selected=true

2 fa fa 5
® 7 8 Mo f3.selected=true
T 8 i:] Mo f11 nz
ri2 r2 e |
f3 | [4 5 f15.selected=true

r1-r15: Feature
Relationship

Figure 6. The transformation pattern with structural precondition

f1-f15: Feature

Precondition Actions
" %I - f1.selected=true
f2.selected=true
% "] a0 [} —.
ozl f3.selected=true
M2 M3 L
3] [ma] il f15.selected=true
. r1-r15: Feature
f1-f15: Feature Relationship
fl.name == "Digital TV"
f1.ChildComposition == Required
f2.name == "Panel Type”
f2.ChildComposition == XOR

Figure 7. The transformation pattern with attribute precondition

With the finalized pattern, the LCD32_37 configuration can be
loaded anytime by executing the pattern. The execution engine
regards the precondition of the pattern as a graph with
constraints, and traverses the model to carry out a graph
matching. The actions will be executed on the match location,
setting all the features as selected. Following the same approach,
users can also demonstrate configuration on part of the feature
model, or some selection patterns for future reuse.

Supporting Constraint Checking. Another challenge that the
MTBD approach helps alleviate is ensuring that configurations
do not violate domain best practices or rules that are not directly
captured in the feature model. For example, although it may be
possible to select a Plasma panel with a refresh rate lower than
600Hz, it is not a typical configuration. In this case, the captured
configuration tasks can aid engineers in checking these
constraints external to the feature model.

From these examples, it can be seen that the precondition of the
pattern serves as the matching criteria for the execution engine.
In other words, a successful pattern match implies the
satisfaction of the constraints. Therefore, MTBD can be applied
to demonstrate the specification of the desired constraints and let
the engine automatically check them. In the second example, we
demonstrate the constraint corresponding to the requirement that
a Panel Type-Plasma can only apply a Refresh Rate at 600Hz.

[Digital TV |
e .
Scroeh Siz0
H-\-""‘-\-\..
—

LCD LED [Plasma | 1926 3237 4042 4650 60Mz | 120Hz 240Hz [G0OHz

Figure 8. Confirming the involved features in the constraint

Specifying a constraint does not require regular editing
operations. Users can perform Confirm Containment operations
to reflect the desired structure of the rule (e.g., the Plasma
feature and 600Hz feature, as well as their parents and
relationships, as illustrated in Figure 8). To further restrict the
pattern and give more specific constraints, we provide attribute
refinement on the precondition — both “Plasma” and “600Hz”
are selected (i.e., both selected attributes are true), as shown in
Figure 9.

Later, when the pattern is executed, a successful pattern match
means that the specific constraint is satisfied in the current
model. Similarly, negative constraints can be demonstrated (e.g.,
demonstrate the selected LCD with the Screen Size 32-37 is
configured with a selected Refresh Rate240Hz), and a successful
pattern matching means the constraint is violated.

Supporting Error Correction. Based on constraint checking,
error correction can be realized by demonstrating the correction
operations. For example, if the situation in Figure 3 is present,
users can demonstrate deselecting the 240Hz feature, and then
provide the structural precondition and attribute precondition.
Executing the finalized pattern (Figure 10) will match the
location that violates the constraints and execute the actions to
fix the violation.

Precondition Actions
[f1-f5: Feature N/A
L rl-r4: FeatureRelationship
fl.name == "Digital TV"
[o R

f5.name == “Plasma”
f5.selected == true
f6.name == “600HZz"
f6.selected == true

Figure 9. Finalized transformation pattern for constraint checking

Precondition Actions
"%3 ‘;1‘2 Feature f7.selected = false

I_%I FeatL.JreReIationship

=]

f7.name == “LCD"f7.selected == true

f8.name == “32-37" f8.selected == true
f8.name == “240Hz" {8.selected == true
Figure 10. Finalized transformation pattern for error correction

4. DISCUSSION

MTBD has been implemented in GEMS (Generic Eclipse
Modeling System) [7]. With a feature modeling language
defined in GEMS, we are able to use MTBD to support the main
feature model manipulation and analysis highlighted in this
paper. Using MTBD, users are only involved in editing feature
model instances to demonstrate the configurations and giving
feedback on the constraints after the demonstration. All of the
other tasks (i.e., optimization, inference, generation, execution,
and correctness checking) are fully automated. Additionally, in
the steps where users are involved, all the information exposed
to users is at the concrete feature modeling level at the specific
working domain, rather than at the generic metamodel level. The
containment confirmation is simply realized by a one-click
operation on the desired feature or relationship, and the extra
precondition is given using the dialog where users can access all
the elements in the precondition and type the constraints

directly. The generated patterns are invisible to users (Figure 5,
6, 7, 9, 10 are presented for the sake of explanation, which are
not visible to users when using MTBD). Therefore, users are
fully isolated from metamodel definitions and implementation
details. Moreover, because no MTLs and tools are used in the
implementation of MTBD, users do not need to know any
constraint or model transformation languages.

In the current implementation, some limitations are still present
that require further improvement. It is not convenient to express
more generic constraints by demonstration and refinement. For
example, if LCD32_37 can only apply the maximum Refresh
Rate, the maximum value cannot be reflected easily by
demonstration or refinement. Furthermore, it would be more
helpful to enable live transformation pattern matching and
execution, rather than allowing users to execute the patterns
manually. Users can be prompted with notifications about the
potential constraint satisfaction/violation, or error correction. In
addition, instead of storing the transformation patterns locally,
using a remote repository to share their configuration and
analysis patterns may improve knowledge reuse and
communication. Finally, how to check the correctness of the
demonstration, when applying multiple patterns to a feature
model, and how to detect and resolve the conflicts among them
are other essential issues.

5. RELATED WORK

MTLs are powerful tools to support feature model
configurations. Both textual and graphical MTLs are applicable
to these tasks, but they all share the challenges of a steep
learning curve that requires knowledge of metamodel
definitions. Similar to MTBD, Model Transformation By
Example (MTBE) [4] is another approach to simplify the
implementation of model transformations by inferring
transformation rules from the given mappings. However, this
approach focuses on transformation between different domains,
so it is not appropriate for the feature model manipulation and
analysis tasks that occur in the same domain.

Some intelligent approaches to automatically detect and fix
configuration have been investigated by White et al. [5]. They
focus on specific constraint checking and correction techniques,
which calculate the minimum error fixing operations based on
the input model and a set of constraints. Instead, we concentrate
on more generic figure model configuration tasks and enabling
end-users to easily specify their own constraints during the
feature model editing process.

6. CONCLUSIONS

A number of manipulation and analyses are frequently
performed when configuring feature models. This paper
described an application of Model Transformation by
Demonstration to simplify the specification of such
manipulation and analysis in feature models, so that

general end-users can convert their knowledge on configuration
and constraints into transformation patterns, which can be
reused in any feature model to automate similar processes.

7. ACKNOWLEDGMENTS
This work is supported by NSF CAREER award CCF-1052616.

8. REFERENCES

[1] Metzger, A., Pohl, K., Heymans, P., Schobbens, P., &
Saval, G. Disambiguating the Documentation of Variability
in Software Product Lines: A separation of concerns,
formalization and automated analysis. Requirements
Engineering Conference, New Delhi, India, Oct. 2007,
243-253.

[2] Sun, Y., White, J., & Gray, J. Model Transformation by
Demonstration. Model Driven Engineering Languages and
Systems, Denver, CO, Oct. 2009, 712-726.

[3] Sendall, S. & Kozaczynski, W. Model Transformation -
The Heart and Soul of Model-Driven Software
Development. IEEE Software, vol. 20, no. 5, 2003, 42-45.

[4] Balogh, Z., & Varr6, D. Model Transformation by Example
Using Inductive Logic Programming. Software and Systems
Modeling. vol. 8, no. 3, 2009, 347-364.

[5] White, J., Schmidt, D., Benavides, D., Trinidad, P., &
Ruiz-Cortes, A. Automated Diagnosis of Product Line
Configuration Errors in Feature Models. International
Software Product Line Conference, Limerick, Ireland, Sep.
2008, 225-234.

[6] Batory, D., Benavides, D., & Ruiz-Cortes, A. Automated
Analysis of Feature Models: Challenges Ahead. Comm. of
the ACM, vol. 49, no. 12, 2006, 45-47.

[7]1 GEMS, http://www.eclipse.org/gmt/gems/

