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ABSTRACT 

This paper describes the experiences with a model-driven 

approach to design and create a time-triggered system 

based on FlexRay. The development and maintenance of 

such systems typically requires much error-prone and 

detailed work, such as calculating transmission and 

execution schedules, protocol initialization and 

configuration, and data transmit and receive 

configurations. A graphical domain-specific language 

allows for efficiently modeling physical and logical 

aspects of the system as well as quality of service 

requirements (QoS) by providing an abstraction over said 

details. A model completion step using scheduling and 

arbitration algorithms then derives missing information. A 

code generation step creates target platform- and 

controller-specific code from the model. 

Keywords: Domain-specific language, time- triggered 

system, FlexRay, Fibex, scheduling. 

1.  INTRODUCTION 

Time-triggered systems have fixed communication and 
execution schedules based on a common clock source, 
which allows for predictable and deterministic behavior of 
such systems. This makes them excellent target 
architectures for real-time systems [18]. For example, 
time-triggered systems are widely used in the automobile 
industry. On the other hand, large time-triggered systems 
require even larger amounts of information points, for 
scheduling function execution and signal transmission, 
protocol initialization, and configuration of controllers. At 
the same time these information points are highly 
dependent on each other, which makes efficient, manual 
development pretty much impossible. 

Our goal was to develop a universal, model-driven 
approach for the development of time-triggered system. 
Developers would focus on 1) physical aspects such as 

electronic control units (ECUs), controllers, wiring, 2) 
logical aspects such as functions, ports, signals, 3) 
deployment spects, the assignment of functions to ECUs, 
and 4) quality attributes such as maximum signal latency 
and reliability. This approach was realized through a 
graphical domain-specific modeling language (DSL) and a 
code generation tool chain. Until now, it was tested and 
evaluated in a simulator setup using multiple participating 
ECUs. 

2. BACKGROUND AND TECHNOLOGIES 

Time-triggered systems 
A real-time system has to perform certain tasks within 

a specified amount of time to meet deadlines dictated by 
its environment [18]. In time-triggered real-time systems 
this requirement is fulfilled by periodically initiating 
activities at predetermined points in time. Time-triggered 
systems are widely used in safety-critical applications due 
to their overall predictability. 

Communication Buses and Models 

FlexRay: The basis of the distributed time-triggered 

system we designed and developed is the FlexRay bus 

[1][19]. FlexRay is a vehicle bus designed to overcome 

the limitations of the CAN bus used in automobiles for 

communication between the ECUs. 
FlexRay uses a TDMA (Time Division Multiple 

Access) access scheme, where each node waits for its turn 
to write on the bus. For this, the FlexRay specification 
includes a time synchronization protocol that establishes a 
shared time base between the distributed nodes. 
Communication on the bus is organized in communication 
cycles, which can contain different types of data. In our 
example we concentrate on static segments. They are 
divided into slots and each slot can contain a reserved 
frame of data that is assigned to a specific ECU. The ECU 
has the opportunity to transmit data when the slot occurs in 
time. If the slot is missed, the node has to wait for the next 



communication cycle to write and transmit the data in that 
slot. Due to this fixed scheduling scheme, FlexRay can 
guarantee a deterministic delivery of messages, as well as 
overall data throughput. 

Additionally FlexRay usually comes with two channels 
(physical wire pairs) that can be used independently but 
more often are used for redundant message transfer to 
provide a fault-tolerant communication system. 

In contrast to event-based communication systems 
such as CAN, each node must know the exact 
communication schedule and needs to be programmed 
with the correct network parameters before it can 
participate on the bus. Consistency in programming the 
nodes can be achieved by using a network description 
model such as FIBEX. 

FIBEX: FIBEX (Field Bus Exchange Format) [2] is 

an XML-based format to represent the configuration of 

message-oriented communications systems. It was 

developed and standardized by ASAM (Association for 

Standardization of Automation and Measuring Systems) 

especially for use in vehicle networks. 
FIBEX provides the facility to describe the information 

needed to design a network cluster of ECUs on all levels 
down to the bit level. Network parameters saved in FIBEX 
provides all participants in the engineering process (such 
as network designers, prototypers, validators, testers) the 
ability to share and exchange the network configurations 
and configure test tools, simulators or ECUs. FIBEX is not 
limited to describe FlexRay-based networks but currently 
also supports other communication bus technologies such 
as CAN, MOST and LIN. 

We used FIBEX as the base of our derived network 
description model. 

Modeling Tool Chain 
The complete set of applied modeling technologies is 

described in Table 1. The most influential technological 
choice was the use of Graphical Modeling Framework 
(GMF) [20]. It was chosen because it is one of the most 
powerful, freely available DSL workbenches. The Epsilon 
and Eugenia tool chains were chosen based on previous 
experience with the complexities and inefficiencies of 
GMF [13]. 

TABLE I.  MODELING TOOLS 

Technology Description 

Eclipse Modeling 

Framework (EMF)  

Modeling- and meta-modeling 

libraries. 

Graphical Modeling 

Framework (GMF) [20] 

Eclipse-based workbench for graphical 

DSLs. 

Java Emitter Templates 

(JET) 

Both used for customization of EMF 

and GMF code generation templates. 

openArchitectureWare 

Xpand  

Epsilon Object Language 

(EOL) [7] 

Powerful scripting language, basis for 

Epsilon model validation and model 
transformation languages. 

Epsilon Eugenia [10] GMF add-on for efficient, repeatable 

DSL generation from a single model. 

 

3. OVERVIEW OF THE SOLUTION 

To handle the complexity of the tasks involved in 
building a distributed time-triggered software system, we 
propose a model-driven solution to raise the level of 
abstractions so that a separation of the time-triggered 
domain problem from the underlying implementation 
details could be realized, leading to an alleviation of the 
complexity. 

The solution is based on the principle of Model-Driven 
Engineering (MDE) [3] and Domain-Specific Modeling 
(DSM) [4], which decouples the description of the 
essential characteristics of a problem from the details of a 
specific solution space (e.g., middleware, programming 
languages). This is accomplished through a domain-
specific modeling language (DSL) [5], here called Time-
Triggered Systems Modeling Language or TTS-ML, to 
declaratively define a software system using high-level 
domain concepts, and automatically generate the desired 
low-level software artifacts (e.g., programming code, 
simulation script, XML deployment description) by model 
transformation engines and generators. 

Figure 1 is an overview of the solution. The TTS-ML 
is defined as a platform-independent metamodel, which 
enables users to specify the high-level distributed time-
triggered system model instances. The high-level model 
only contains the direct concepts and specification about 
the problem domain, without any low-level scheduling or 
communication information, as well without any 
implementation details. From the high-level model, a 
model completion step generates a complete model 
automatically through model-to-model transformation [6], 
calculating and incorporating all the necessary low-level 
information to the model. Finally, various types of 
platform-dependent implementations (i.e., codes) can be 
generated from the models using several code generators. 
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Figure 1. Overview of the Solution 

 
Using this solution, users can specify their desired 

distributed time-triggered systems in a domain-specific 
way, which not only improves the efficiency, accuracy, 
and reliability of the system development, but potentially 
enables domain experts who are not experienced in 
software development to participate in the system design 
and implementation. The details of the solution will be 
given in the following sections. 



4. TIME-TRIGGERED SYSTEMS MODELING 

LANGUAGE 

The TTS-ML’s metamodel was derived from the 
FIBEX specification [2]. TTS-ML then added a number of 
modeling concepts, such as function execution schedule 
elements (FIBEX does not cover function execution 
schedules) and quality attribute properties. 

The graphical modeling language can be used to 
specify three aspects of the system: 1) the physical view of 
the system hardware architecture 2) the logical view of the 
data flows among functions 3) the deployment view of the 
function assignment. These views were, because of their 
intuitiveness, derived from the 4+1 view model for 
software architectures [21]. 

Physical View - System Architecture 
The physical view specifies how the hardware 

components are configured and connected within the 
system. Figure 2 shows an example of specifying the 
physical view in the high-level model. 

The cluster is made up of all ECUs (Electronic Control 
Units) linked to one physical bus, and therefore share the 
same communication medium and protocol, which for 
TTS-ML is FlexRay. Channels (wire pairs) connect 
different ECUs. The FlexRay bus specifies two channels 
in order to create a more reliable communication link. 
Each ECU contains a FlexRay controller that is 
responsible for sending and receiving data frames from the 
communication medium. 

 
Figure 2. An example of modeling the physical view 

Some cluster-wide attributes describing the 
communication protocol are pKeySlotId and  
pWakeUpChannel; some local properties about the timing 
can be defined per controller (e.g., MicroPerCycle, 
RateCorrectionOut, etc.) A complete physical model 
represents an ensemble of ECUs connected correctly and 
ready to work. 

Logical View – Function Data Flows 
Functions are executed on different ECUs. It is very 

common that functions need to communicate with each 
other to collaborate on some of the tasks. Data 
communication among functions involves data flows and 
signals. Therefore, the main purpose of the logical view is 
to specify the functions, input and output signals of 
functions and the correspondent data flows that connect 
function input ports and output ports. 

 

 
Figure 3. An example of modeling the logical view 

As shown in Figure 3, functions have input and output 
ports. Dataflows connect an output port to one or more 
input ports. A signal exist in each set of connected ports, 
which provides the information about the data to be 
communicated between the ports, such as the data type or 
the data length. 

Deployment View - Function Assignment 
While the logical view specifies the data 

communication among functions, the deployment view 
assigns each function to an ECU simply by making 
connections between a function and an ECU. 

 
Figure 4. An example of deployment view 

Another important aspect is the definition of function 
execution requirements for each function to give timing 
constraints on its execution. The most essential execution 
requirement attributes are: Cycle Period (i.e., the inverse 
of the frequency of function execution), Worst Case 
Execution Time (WCET) (i.e., the duration of executing a 
function in the worst case), and Cycle Offset (i.e., the first 
cycle to execute the function). These attributes are the 
fundamental elements for calculating function execution 
and signal communication schedules in the model 
completion step. 

5. MODEL COMPLETION 

The high-level model represented by the three views 
only specifies the static architecture and function 
configuration. In order to generate the implementation 
code, more details about the dynamic execution and 
transmission information are necessary, such as when and 
how often to execute each function, when and how often 
to transmit and receive data in each ECU, how to package 
the signal data and how to dispatch it. Although the 



corresponding elements (e.g., FrameTriggering, 
FunctionExecutionMatrix) have been defined in the 
metamodel of TTS-ML (inherited from FIBEX), it is a 
complex, tedious and error-prone task to specify this 
information manually, particularly when a huge number of 
functions and data flow connections exists in the system. 
Thus, a model completion process is implemented to 
automatically generate the scheduling matrices and 
complete the high-level model with low-level information. 
This completed model serves as the basis for code 
generation. 

The model completion consists of the flowing steps: 

Step 1 – Model validation 
Before model completion, it must be ensured that all 

the necessary model elements and properties have already 
been specified in the high-level model instance correctly. 
For instance, each function must be assigned to an ECU; 
each function must have a function requirement with all 
the timing constraints; the signal must contain the specific 
data information; and more. Missing any of these will lead 
to failures when calculating the scheduling matrices and 
adding extra low-level model elements. A set of rules have 
been defined in Epsilon Validation Language (EVL) [7] to 
check if the model satisfies all the constraints. Figure 5 is 
an example of the rule, which means that the Cycle Period 
specified for a certain function as a timing constraint must 
be a non-zero value. 

context FunctionReqType { 

constraint periodNotZero { 

 check: self.CyclePeriod <> 0.0 

 message: 'FunctionReqType '  

             + self.Id + ' must have 

             a non-zero CyclePeriod' 

} 

} 

Figure 5. An example of a model checking rule 

Step 2 – Generate function execution schedule matrix. 
The correct execution of the whole system is realized 

by the execution of functions assigned to ECUs. Once all 
functions are assigned and the function execution 
requirement for each function is specified in the high-level 
model, a function execution matrix can be generated for 
each ECU through the following simple algorithm: 

1. Calculate the duration of a single FlexRay cycle. 
2. Convert the Cycle Period, Cycle Offset, WCET of 

each function requirement from seconds to cycles. 
3. For each ECU, calculate the total number of cycles 

in a schedule (called cycle block) using the least 
common multiple of all the function Cycle Period. 

4. For each function assigned to an ECU, try to place 
its execution blocks according to its period from 
the very first available cycle in the cycle block. If 
a certain cycle is not available (i.e., the cycle is 
already assigned to other functions), try to shift the 
function’s schedule by one cycle. 

5. If all the functions in an ECU are assigned to the 
right number of execution cycles, the function 
execution scheduling succeeds; as of now, if a 
function cannot be assigned enough cycles, 

scheduling fails. 

If the function execution scheduling succeeds on an 
ECU, a list of function execution entries will be added to 
the function execution matrix of that ECU, specifying all 
the cycles that are used and what function will be executed 
on those cycles. The matrix data is integrated into the 
model trough a model-to-model transformation 
implemented using Epsilon Transformation Language 
(ETL) [7]. 

A function scheduling matrix visualization is also 
implemented to demonstrate the scheduling as shown in 
Figure 6.  

 
Figure 6. The visualization of function execution schedule  

Step 3 – Generate signal communication schedule 

matrix. 
The execution of functions requires the correct input 

signal to produce the right output signal. Therefore, the 
data at the input port of the function should be received 
and ready to be used before the execution of the function, 
and the function must transmit the data from the output 
port timely for other functions to use. 

The generated signal communication schedule uses the 
static segment in the FlexRay communication block. 64 
static slots are available in each FlexRay cycle to transmit 
/ receive data frames. A FlexRay cycle block can contain 
up to 1023 cycles. The following algorithm is applied to 
generate the scheduling: 

1. Infer a port requirement for each input / output 
port from the owning function’s requirement. The 
Cycle Period and Cycle Offset of the port 
requirement should be equal to its function. If the 
two connected input and output ports have 
different Cycle Period, the shorter period will 
override the longer period. 

2. Decide the FlexRay cycle(s) in a FlexRay cycle 
block to transmit / receive the signals according to 
Cycle Period and Cycle Offset. If a certain cycle is 
not available (i.e., all the static slots are allocated 
to other signals in this cycle), shift to the next 
available cycle. 

3. Once the cycle is set, assign static slot(s) based on 
the length of the data from the first available static 
slot in this FlexRay cycle. 

4. If all the signals can be assigned with enough and 
correct FlexRay cycles and slots, the scheduling 
succeeds; if certain signals cannot be assigned 
with enough cycles and slots with the right Cycle 
Period, scheduling fails. 

All the signals in the same static slot of a FlexRay 
cycle compose a FlexRay frame, which is the minimum 
communication unit in FlexRay. Figure 7 shows the cycle-
based signal transmission schedule, similar to the function 
execution schedule. 



Once the scheduling succeeds and signal compositions 
are determined, again all information is integrated into 
model using model-to-model transformation. 

 
Figure 7. The visualization of signal communication 

schedule 

Notes about scheduling 
The scheduling algorithm used in this project is a 

straight-forward fitting algorithm without complex 
optimization. A number of works have been done on the 
FlexRay static segment scheduling and optimization 
[14][15][16][17]. In the future, these algorithms could 
easily be integrated into the current framework. Besides, 
after the model completion process, users still can 
manually modify the model for specific purposes. An 
isGenerated flag is enabled to prevent user-modified 
elements from being overwritten by the next model 
completion process. 

6. CODE GENERATION 

The completed model is a platform-independent 
representation of the whole system. Since there exist 
various FlexRay controllers placed on various hardware 
platforms, such as Freescale S12 Microcontroller [8] or 
Eberspächer FlexRayCard [9], platform-dependent code is 
needed to be generated to implement the actual system. 

In this framework, a code generator is implemented for 
each type of platform, using Model-To-Text (M2T) 
transformation [11]. The M2T transformation is specified 
by a code generation template, which maps each model 
element to the concrete textual code. A code generation 
template excerpt is shown in Figure 8, meaning that for 
each output function port, a variable declaration statement 
is generated to be used as the buffer for data transmission. 

«FOREACH getTxSlots(this, ecu) AS output-» 

UINT16 tx_data_«output» 

[«getCluster().PayloadLengthStatic»] = {0};              

«ENDFOREACH-» 

Figure 8. An excerpt of code generation template 

A good code generation practice is to design a domain 
framework, which contains common functionality so that a 
minimum amount of code needs to be generated from the 
models [12]. With TTS-ML, a domain framework has 
been built to handle basic FlexRay protocol operation 
procedures and the basic hardware configuration. The 
generated code realizes the FlexRay hardware 
configuration, function execution initialization and 
scheduling, signal communication scheduling, signal 
dispatch and composition, as shown in Figure 9. A good 
separation of the generated code from the code framework 
not only reduces the complexity of M2T specifications, but 
also makes the architecture more maintainable. 

Flexray Code Framework

Flexray Message 
Buffer 

Configuration

Function Execution 
Initialization and 

Scheduling

Signal 
Communication 

Scheduling, 
Composition and 

Dispatch

 
Figure 9. Code framework and generated code 

Currently, two generators have been implemented for 
both the Freescale S12 Microcontroller and Eberspächer 
FlexRayCard platforms. Other generators can be defined 
in the same way as extensions. 

7. TEST AND EVALUATION 

To evaluate the framework, a vehicle simulation 
environment has been setup as illustrated in Figure 10. The 
environment consists of two Freescale S12 boards and one 
Eberspächer FlexRayCard connected to a PC. Board B1 
connects with a steering wheel, a brake pedal and an 
acceleration pedal, and provides driver input signals. A car 
simulation program is running in the PC, which generates 
the real-time environmental sensor data (e.g., speed, 
turning angle). A driving assistant algorithm is running in 
B2, with the function being that if dangerous driving 
conditions are encountered, direct control of the car by the 
driver is (partially) overridden with stabilizing behavior by 
the assistant algorithm in order to automatically reach a 
safe driving state. 

Freescale S12
B1

Freescale S12
B2

(Driving Alogithm)

Eberspächer 
FlexrayCard 

C1

Car SimulationCar Simulation

Steering 
Wheel

Brake Pedal

Acceleration 
Pedal

 
Figure 10. The car simulation environment 

The high-level model consists of three views: 1) the 
physical view with one cluster, three ECUs with three 
controllers, and two channels, 2) the logical view with six 
functions and seventy-four signals, 3) the deployment 
view with six function assignments and four function 
requirements given to the six functions. After the model 
completion and code generation steps, individual 
implementations are generated for the two boards and one 
card. 

8. EXPERIENCES 

A number of experiences have been gained in the 
process of designing and implementing the whole 
framework. 

While we did not collect metrics related to effort of 
DSL and efficiency (see [13] for data on that), this project 
clearly demonstrated how quality can be raised by using a 
model-driven approach. Even the small, distributed, time-



triggered system presented in this paper involves a host of 
hardware configurations, function and signal scheduling 
information. Manual implementation of the now generated 
code would have been tedious, time-consuming and error-
prone. Additionally as such systems evolve, much of the 
previous scheduling and configuration effort would have 
to be repeated. By contrast, creating and evolving a high-
level model using appropriate abstractions is much more 
efficient and results in less chance for errors. 

Using the Eugenia tool [10] considerably sped up the 
creation of the graphical DSL editors. Building and 
maintaining a modeling tool with GMF is by no means an 
easy task, which requires six individual models that are 
highly dependent on each other and all need to be in sync 
with each other. The Eugenia tool essentially reduces 
development and maintenance effort down to one model 
plus some optional, separate customization information. 

The FIBEX specification contains a number of good 
abstractions over the low-level implementation elements 
and properties. The derivation of TTS-ML from the 
FIBEX XML schemas had several additional advantages. 
1) Domain experts familiar with FIBEX will quickly be 
able to use TTS-ML even though some additional 
elements need to be mastered. 2) Model exchange with 
FIBEX-aware tools and hardware can be accomplished 
with relative ease. 3) The biggest benefit and time savings, 
however, came from reusing over one hundred metamodel 
classes and even more properties that otherwise would 
have had to be created from scratch. Additionally, FIBEX 
is compatible with not only FlexRay, but also CAN, 
MOST, and other protocols, so it provides a good potential 
to extend the DSL to support other types of distributed 
systems. 

And finally, a welcome side effect is the improvement 
of overall target system architecture. The design of the 
domain framework underlying the generated code required 
the identification of common and variable parts of such 
systems. By separating those parts and designing 
changeable and extensible software components, the 
architecture became more extensible and maintainable, 
too. 

9. CONCLUSION AND FUTURE WORK 

This paper presents a model-driven approach to 
develop FlexRay-based, time-triggered, distributed 
systems. Model completion and code generation were 
applied to derive platform-dependent models and 
ultimately platform-specific code from a partial, platform-
independent model. The test system could be built in less 
time and with higher quality. Additionally, the effort of 
creating the modeling tool chain was significantly reduced 
compared to previous projects.  

Future work will include the development of larger 
systems with TTS-ML, scheduling tolerance requirements 
and improved scheduling algorithms, and the possibility to 
integrate with legacy ECUs that rely on unchangeable, 
predefined signal transmission schedules. 
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