
Applying Model-Driven Design and Development to

Distributed Time-Triggered Systems

Yu Sun

Computer and Information Sciences, University of Alabama at Birmingham,

Birmingham, AL, USA

yusun@cis.uab.edu

and

Christoph Wienands, Meik Felser

GTF System Architecture and Platforms, Corporate Research, Siemens Corporation

Princeton, NJ, USA

{christoph.wienands, meik.felser}@siemens.com

ABSTRACT

This paper describes the experiences with a model-driven

approach to design and create a time-triggered system

based on FlexRay. The development and maintenance of

such systems typically requires much error-prone and

detailed work, such as calculating transmission and

execution schedules, protocol initialization and

configuration, and data transmit and receive

configurations. A graphical domain-specific language

allows for efficiently modeling physical and logical

aspects of the system as well as quality of service

requirements (QoS) by providing an abstraction over said

details. A model completion step using scheduling and

arbitration algorithms then derives missing information. A

code generation step creates target platform- and

controller-specific code from the model.

Keywords: Domain-specific language, time- triggered

system, FlexRay, Fibex, scheduling.

1. INTRODUCTION

Time-triggered systems have fixed communication and
execution schedules based on a common clock source,
which allows for predictable and deterministic behavior of
such systems. This makes them excellent target
architectures for real-time systems [18]. For example,
time-triggered systems are widely used in the automobile
industry. On the other hand, large time-triggered systems
require even larger amounts of information points, for
scheduling function execution and signal transmission,
protocol initialization, and configuration of controllers. At
the same time these information points are highly
dependent on each other, which makes efficient, manual
development pretty much impossible.

Our goal was to develop a universal, model-driven
approach for the development of time-triggered system.
Developers would focus on 1) physical aspects such as

electronic control units (ECUs), controllers, wiring, 2)
logical aspects such as functions, ports, signals, 3)
deployment spects, the assignment of functions to ECUs,
and 4) quality attributes such as maximum signal latency
and reliability. This approach was realized through a
graphical domain-specific modeling language (DSL) and a
code generation tool chain. Until now, it was tested and
evaluated in a simulator setup using multiple participating
ECUs.

2. BACKGROUND AND TECHNOLOGIES

Time-triggered systems
A real-time system has to perform certain tasks within

a specified amount of time to meet deadlines dictated by
its environment [18]. In time-triggered real-time systems
this requirement is fulfilled by periodically initiating
activities at predetermined points in time. Time-triggered
systems are widely used in safety-critical applications due
to their overall predictability.

Communication Buses and Models

FlexRay: The basis of the distributed time-triggered

system we designed and developed is the FlexRay bus

[1][19]. FlexRay is a vehicle bus designed to overcome

the limitations of the CAN bus used in automobiles for

communication between the ECUs.
FlexRay uses a TDMA (Time Division Multiple

Access) access scheme, where each node waits for its turn
to write on the bus. For this, the FlexRay specification
includes a time synchronization protocol that establishes a
shared time base between the distributed nodes.
Communication on the bus is organized in communication
cycles, which can contain different types of data. In our
example we concentrate on static segments. They are
divided into slots and each slot can contain a reserved
frame of data that is assigned to a specific ECU. The ECU
has the opportunity to transmit data when the slot occurs in
time. If the slot is missed, the node has to wait for the next

communication cycle to write and transmit the data in that
slot. Due to this fixed scheduling scheme, FlexRay can
guarantee a deterministic delivery of messages, as well as
overall data throughput.

Additionally FlexRay usually comes with two channels
(physical wire pairs) that can be used independently but
more often are used for redundant message transfer to
provide a fault-tolerant communication system.

In contrast to event-based communication systems
such as CAN, each node must know the exact
communication schedule and needs to be programmed
with the correct network parameters before it can
participate on the bus. Consistency in programming the
nodes can be achieved by using a network description
model such as FIBEX.

FIBEX: FIBEX (Field Bus Exchange Format) [2] is

an XML-based format to represent the configuration of

message-oriented communications systems. It was

developed and standardized by ASAM (Association for

Standardization of Automation and Measuring Systems)

especially for use in vehicle networks.
FIBEX provides the facility to describe the information

needed to design a network cluster of ECUs on all levels
down to the bit level. Network parameters saved in FIBEX
provides all participants in the engineering process (such
as network designers, prototypers, validators, testers) the
ability to share and exchange the network configurations
and configure test tools, simulators or ECUs. FIBEX is not
limited to describe FlexRay-based networks but currently
also supports other communication bus technologies such
as CAN, MOST and LIN.

We used FIBEX as the base of our derived network
description model.

Modeling Tool Chain
The complete set of applied modeling technologies is

described in Table 1. The most influential technological
choice was the use of Graphical Modeling Framework
(GMF) [20]. It was chosen because it is one of the most
powerful, freely available DSL workbenches. The Epsilon
and Eugenia tool chains were chosen based on previous
experience with the complexities and inefficiencies of
GMF [13].

TABLE I. MODELING TOOLS

Technology Description

Eclipse Modeling

Framework (EMF)

Modeling- and meta-modeling

libraries.

Graphical Modeling

Framework (GMF) [20]

Eclipse-based workbench for graphical

DSLs.

Java Emitter Templates

(JET)

Both used for customization of EMF

and GMF code generation templates.

openArchitectureWare

Xpand

Epsilon Object Language

(EOL) [7]

Powerful scripting language, basis for

Epsilon model validation and model
transformation languages.

Epsilon Eugenia [10] GMF add-on for efficient, repeatable

DSL generation from a single model.

3. OVERVIEW OF THE SOLUTION

To handle the complexity of the tasks involved in
building a distributed time-triggered software system, we
propose a model-driven solution to raise the level of
abstractions so that a separation of the time-triggered
domain problem from the underlying implementation
details could be realized, leading to an alleviation of the
complexity.

The solution is based on the principle of Model-Driven
Engineering (MDE) [3] and Domain-Specific Modeling
(DSM) [4], which decouples the description of the
essential characteristics of a problem from the details of a
specific solution space (e.g., middleware, programming
languages). This is accomplished through a domain-
specific modeling language (DSL) [5], here called Time-
Triggered Systems Modeling Language or TTS-ML, to
declaratively define a software system using high-level
domain concepts, and automatically generate the desired
low-level software artifacts (e.g., programming code,
simulation script, XML deployment description) by model
transformation engines and generators.

Figure 1 is an overview of the solution. The TTS-ML
is defined as a platform-independent metamodel, which
enables users to specify the high-level distributed time-
triggered system model instances. The high-level model
only contains the direct concepts and specification about
the problem domain, without any low-level scheduling or
communication information, as well without any
implementation details. From the high-level model, a
model completion step generates a complete model
automatically through model-to-model transformation [6],
calculating and incorporating all the necessary low-level
information to the model. Finally, various types of
platform-dependent implementations (i.e., codes) can be
generated from the models using several code generators.

TTS-ML

Metamodel

TTS-ML

High-level

Model

TTS-ML

Completed

Model

Freescale S12

Code

Eberspaecher

Code

Transform To

Generate

Other Platform

Code...

Conform To

Platform

Independent

Metamodel

Platform

Independent

Model

Platform

Dependent

Code

Figure 1. Overview of the Solution

Using this solution, users can specify their desired

distributed time-triggered systems in a domain-specific
way, which not only improves the efficiency, accuracy,
and reliability of the system development, but potentially
enables domain experts who are not experienced in
software development to participate in the system design
and implementation. The details of the solution will be
given in the following sections.

4. TIME-TRIGGERED SYSTEMS MODELING

LANGUAGE

The TTS-ML’s metamodel was derived from the
FIBEX specification [2]. TTS-ML then added a number of
modeling concepts, such as function execution schedule
elements (FIBEX does not cover function execution
schedules) and quality attribute properties.

The graphical modeling language can be used to
specify three aspects of the system: 1) the physical view of
the system hardware architecture 2) the logical view of the
data flows among functions 3) the deployment view of the
function assignment. These views were, because of their
intuitiveness, derived from the 4+1 view model for
software architectures [21].

Physical View - System Architecture
The physical view specifies how the hardware

components are configured and connected within the
system. Figure 2 shows an example of specifying the
physical view in the high-level model.

The cluster is made up of all ECUs (Electronic Control
Units) linked to one physical bus, and therefore share the
same communication medium and protocol, which for
TTS-ML is FlexRay. Channels (wire pairs) connect
different ECUs. The FlexRay bus specifies two channels
in order to create a more reliable communication link.
Each ECU contains a FlexRay controller that is
responsible for sending and receiving data frames from the
communication medium.

Figure 2. An example of modeling the physical view

Some cluster-wide attributes describing the
communication protocol are pKeySlotId and
pWakeUpChannel; some local properties about the timing
can be defined per controller (e.g., MicroPerCycle,
RateCorrectionOut, etc.) A complete physical model
represents an ensemble of ECUs connected correctly and
ready to work.

Logical View – Function Data Flows
Functions are executed on different ECUs. It is very

common that functions need to communicate with each
other to collaborate on some of the tasks. Data
communication among functions involves data flows and
signals. Therefore, the main purpose of the logical view is
to specify the functions, input and output signals of
functions and the correspondent data flows that connect
function input ports and output ports.

Figure 3. An example of modeling the logical view

As shown in Figure 3, functions have input and output
ports. Dataflows connect an output port to one or more
input ports. A signal exist in each set of connected ports,
which provides the information about the data to be
communicated between the ports, such as the data type or
the data length.

Deployment View - Function Assignment
While the logical view specifies the data

communication among functions, the deployment view
assigns each function to an ECU simply by making
connections between a function and an ECU.

Figure 4. An example of deployment view

Another important aspect is the definition of function
execution requirements for each function to give timing
constraints on its execution. The most essential execution
requirement attributes are: Cycle Period (i.e., the inverse
of the frequency of function execution), Worst Case
Execution Time (WCET) (i.e., the duration of executing a
function in the worst case), and Cycle Offset (i.e., the first
cycle to execute the function). These attributes are the
fundamental elements for calculating function execution
and signal communication schedules in the model
completion step.

5. MODEL COMPLETION

The high-level model represented by the three views
only specifies the static architecture and function
configuration. In order to generate the implementation
code, more details about the dynamic execution and
transmission information are necessary, such as when and
how often to execute each function, when and how often
to transmit and receive data in each ECU, how to package
the signal data and how to dispatch it. Although the

corresponding elements (e.g., FrameTriggering,
FunctionExecutionMatrix) have been defined in the
metamodel of TTS-ML (inherited from FIBEX), it is a
complex, tedious and error-prone task to specify this
information manually, particularly when a huge number of
functions and data flow connections exists in the system.
Thus, a model completion process is implemented to
automatically generate the scheduling matrices and
complete the high-level model with low-level information.
This completed model serves as the basis for code
generation.

The model completion consists of the flowing steps:

Step 1 – Model validation
Before model completion, it must be ensured that all

the necessary model elements and properties have already
been specified in the high-level model instance correctly.
For instance, each function must be assigned to an ECU;
each function must have a function requirement with all
the timing constraints; the signal must contain the specific
data information; and more. Missing any of these will lead
to failures when calculating the scheduling matrices and
adding extra low-level model elements. A set of rules have
been defined in Epsilon Validation Language (EVL) [7] to
check if the model satisfies all the constraints. Figure 5 is
an example of the rule, which means that the Cycle Period
specified for a certain function as a timing constraint must
be a non-zero value.

context FunctionReqType {

constraint periodNotZero {

 check: self.CyclePeriod <> 0.0

 message: 'FunctionReqType '

 + self.Id + ' must have

 a non-zero CyclePeriod'

}

}

Figure 5. An example of a model checking rule

Step 2 – Generate function execution schedule matrix.
The correct execution of the whole system is realized

by the execution of functions assigned to ECUs. Once all
functions are assigned and the function execution
requirement for each function is specified in the high-level
model, a function execution matrix can be generated for
each ECU through the following simple algorithm:

1. Calculate the duration of a single FlexRay cycle.
2. Convert the Cycle Period, Cycle Offset, WCET of

each function requirement from seconds to cycles.
3. For each ECU, calculate the total number of cycles

in a schedule (called cycle block) using the least
common multiple of all the function Cycle Period.

4. For each function assigned to an ECU, try to place
its execution blocks according to its period from
the very first available cycle in the cycle block. If
a certain cycle is not available (i.e., the cycle is
already assigned to other functions), try to shift the
function’s schedule by one cycle.

5. If all the functions in an ECU are assigned to the
right number of execution cycles, the function
execution scheduling succeeds; as of now, if a
function cannot be assigned enough cycles,

scheduling fails.

If the function execution scheduling succeeds on an
ECU, a list of function execution entries will be added to
the function execution matrix of that ECU, specifying all
the cycles that are used and what function will be executed
on those cycles. The matrix data is integrated into the
model trough a model-to-model transformation
implemented using Epsilon Transformation Language
(ETL) [7].

A function scheduling matrix visualization is also
implemented to demonstrate the scheduling as shown in
Figure 6.

Figure 6. The visualization of function execution schedule

Step 3 – Generate signal communication schedule

matrix.
The execution of functions requires the correct input

signal to produce the right output signal. Therefore, the
data at the input port of the function should be received
and ready to be used before the execution of the function,
and the function must transmit the data from the output
port timely for other functions to use.

The generated signal communication schedule uses the
static segment in the FlexRay communication block. 64
static slots are available in each FlexRay cycle to transmit
/ receive data frames. A FlexRay cycle block can contain
up to 1023 cycles. The following algorithm is applied to
generate the scheduling:

1. Infer a port requirement for each input / output
port from the owning function’s requirement. The
Cycle Period and Cycle Offset of the port
requirement should be equal to its function. If the
two connected input and output ports have
different Cycle Period, the shorter period will
override the longer period.

2. Decide the FlexRay cycle(s) in a FlexRay cycle
block to transmit / receive the signals according to
Cycle Period and Cycle Offset. If a certain cycle is
not available (i.e., all the static slots are allocated
to other signals in this cycle), shift to the next
available cycle.

3. Once the cycle is set, assign static slot(s) based on
the length of the data from the first available static
slot in this FlexRay cycle.

4. If all the signals can be assigned with enough and
correct FlexRay cycles and slots, the scheduling
succeeds; if certain signals cannot be assigned
with enough cycles and slots with the right Cycle
Period, scheduling fails.

All the signals in the same static slot of a FlexRay
cycle compose a FlexRay frame, which is the minimum
communication unit in FlexRay. Figure 7 shows the cycle-
based signal transmission schedule, similar to the function
execution schedule.

Once the scheduling succeeds and signal compositions
are determined, again all information is integrated into
model using model-to-model transformation.

Figure 7. The visualization of signal communication

schedule

Notes about scheduling
The scheduling algorithm used in this project is a

straight-forward fitting algorithm without complex
optimization. A number of works have been done on the
FlexRay static segment scheduling and optimization
[14][15][16][17]. In the future, these algorithms could
easily be integrated into the current framework. Besides,
after the model completion process, users still can
manually modify the model for specific purposes. An
isGenerated flag is enabled to prevent user-modified
elements from being overwritten by the next model
completion process.

6. CODE GENERATION

The completed model is a platform-independent
representation of the whole system. Since there exist
various FlexRay controllers placed on various hardware
platforms, such as Freescale S12 Microcontroller [8] or
Eberspächer FlexRayCard [9], platform-dependent code is
needed to be generated to implement the actual system.

In this framework, a code generator is implemented for
each type of platform, using Model-To-Text (M2T)
transformation [11]. The M2T transformation is specified
by a code generation template, which maps each model
element to the concrete textual code. A code generation
template excerpt is shown in Figure 8, meaning that for
each output function port, a variable declaration statement
is generated to be used as the buffer for data transmission.

«FOREACH getTxSlots(this, ecu) AS output-»

UINT16 tx_data_«output»

[«getCluster().PayloadLengthStatic»] = {0};

«ENDFOREACH-»

Figure 8. An excerpt of code generation template

A good code generation practice is to design a domain
framework, which contains common functionality so that a
minimum amount of code needs to be generated from the
models [12]. With TTS-ML, a domain framework has
been built to handle basic FlexRay protocol operation
procedures and the basic hardware configuration. The
generated code realizes the FlexRay hardware
configuration, function execution initialization and
scheduling, signal communication scheduling, signal
dispatch and composition, as shown in Figure 9. A good
separation of the generated code from the code framework
not only reduces the complexity of M2T specifications, but
also makes the architecture more maintainable.

Flexray Code Framework

Flexray Message
Buffer

Configuration

Function Execution
Initialization and

Scheduling

Signal
Communication

Scheduling,
Composition and

Dispatch

Figure 9. Code framework and generated code

Currently, two generators have been implemented for
both the Freescale S12 Microcontroller and Eberspächer
FlexRayCard platforms. Other generators can be defined
in the same way as extensions.

7. TEST AND EVALUATION

To evaluate the framework, a vehicle simulation
environment has been setup as illustrated in Figure 10. The
environment consists of two Freescale S12 boards and one
Eberspächer FlexRayCard connected to a PC. Board B1
connects with a steering wheel, a brake pedal and an
acceleration pedal, and provides driver input signals. A car
simulation program is running in the PC, which generates
the real-time environmental sensor data (e.g., speed,
turning angle). A driving assistant algorithm is running in
B2, with the function being that if dangerous driving
conditions are encountered, direct control of the car by the
driver is (partially) overridden with stabilizing behavior by
the assistant algorithm in order to automatically reach a
safe driving state.

Freescale S12
B1

Freescale S12
B2

(Driving Alogithm)

Eberspächer
FlexrayCard

C1

Car SimulationCar Simulation

Steering
Wheel

Brake Pedal

Acceleration
Pedal

Figure 10. The car simulation environment

The high-level model consists of three views: 1) the
physical view with one cluster, three ECUs with three
controllers, and two channels, 2) the logical view with six
functions and seventy-four signals, 3) the deployment
view with six function assignments and four function
requirements given to the six functions. After the model
completion and code generation steps, individual
implementations are generated for the two boards and one
card.

8. EXPERIENCES

A number of experiences have been gained in the
process of designing and implementing the whole
framework.

While we did not collect metrics related to effort of
DSL and efficiency (see [13] for data on that), this project
clearly demonstrated how quality can be raised by using a
model-driven approach. Even the small, distributed, time-

triggered system presented in this paper involves a host of
hardware configurations, function and signal scheduling
information. Manual implementation of the now generated
code would have been tedious, time-consuming and error-
prone. Additionally as such systems evolve, much of the
previous scheduling and configuration effort would have
to be repeated. By contrast, creating and evolving a high-
level model using appropriate abstractions is much more
efficient and results in less chance for errors.

Using the Eugenia tool [10] considerably sped up the
creation of the graphical DSL editors. Building and
maintaining a modeling tool with GMF is by no means an
easy task, which requires six individual models that are
highly dependent on each other and all need to be in sync
with each other. The Eugenia tool essentially reduces
development and maintenance effort down to one model
plus some optional, separate customization information.

The FIBEX specification contains a number of good
abstractions over the low-level implementation elements
and properties. The derivation of TTS-ML from the
FIBEX XML schemas had several additional advantages.
1) Domain experts familiar with FIBEX will quickly be
able to use TTS-ML even though some additional
elements need to be mastered. 2) Model exchange with
FIBEX-aware tools and hardware can be accomplished
with relative ease. 3) The biggest benefit and time savings,
however, came from reusing over one hundred metamodel
classes and even more properties that otherwise would
have had to be created from scratch. Additionally, FIBEX
is compatible with not only FlexRay, but also CAN,
MOST, and other protocols, so it provides a good potential
to extend the DSL to support other types of distributed
systems.

And finally, a welcome side effect is the improvement
of overall target system architecture. The design of the
domain framework underlying the generated code required
the identification of common and variable parts of such
systems. By separating those parts and designing
changeable and extensible software components, the
architecture became more extensible and maintainable,
too.

9. CONCLUSION AND FUTURE WORK

This paper presents a model-driven approach to
develop FlexRay-based, time-triggered, distributed
systems. Model completion and code generation were
applied to derive platform-dependent models and
ultimately platform-specific code from a partial, platform-
independent model. The test system could be built in less
time and with higher quality. Additionally, the effort of
creating the modeling tool chain was significantly reduced
compared to previous projects.

Future work will include the development of larger
systems with TTS-ML, scheduling tolerance requirements
and improved scheduling algorithms, and the possibility to
integrate with legacy ECUs that rely on unchangeable,
predefined signal transmission schedules.

REFERENCES

[1] FlexRay Consortium, FlexRay Communications System,
Protocol Specification, Version 2.1, Revision A, 2005.

[2] FIBEX Expert Group, ASAM MCD-2 NET, Data Model for

ECU Network Systems (Field Bus Data Exchange Format),
Version 3.1.0, Association for Standardisation of Automation and
Measuring Systems (ASAM), 2009.

[3] Douglas C. Schmidt, Model-Driven Engineering, IEEE
Computer, vol. 39, no. 2, 2006, pages 25-32.

[4] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg
Nordstrom, Jonathan Sprinkle, Gábor Karsai, Composing

Domain-Specific Design Environments, IEEE Computer, vol.34,
no. 11, 2001, pages 44-51.

[5] Jeff Gray, Juha-Pekka Tolvanen, Steven Kelly, Aniruddha
Gokhale, Sandeep Neema, Jonathan Sprinkle, Domain-Specific

Modeling, Handbook of Dynamic System Modeling, CRC Press,
2007, Chapter 7, pages 7-1 through 7-20.

[6] Shane Sendall, Wojtek Kozaczynski, Model Transformation -

The Heart and Soul of Model-Driven Software Development,
IEEE Software, vol. 20, no. 5, 2003, pages 42-45.

[7] Eclipse Eplison. http://www.eclipse.org/gmt/epsilon/

[8] Freescale S12 Microcontroller. http://www.freescale.com/

[9] Eberspächer Flexray Card. http://www.eberspacher.com/

[10] Eugenia. http://www.eclipse.org/gmt/epsilon/doc/eugenia/

[11] Manoli Albert, Javier Muñoz, Vicente Pelechano, Oscar Pastor,
Model to Text Transformation in Practice: Generating Code

From Rich Associations Specifications, The 2nd International
Workshop on Best Practices in UML (BP-UML06), Tucson, USA,
2006.

[12] Steven Kelly, Juha-Pekka Tolvanen, Domain-Specific Modeling:

Enabling Full Code Generation, Wiley-IEEE Computer Society
Press, 2008.

[13] Christoph Wienands, Michael Golm, Anatomy of a Visual

Domain-Specific Language Project in an Industrial Context,
International Conference on Model Driven Engineering Languages
and Systems, Denver, CO, October 2009, pages 453-467.

[14] Haibo Zeng, Wei Zheng, Marco Di Natale, Arkadeb Ghosal, Paolo
Giusto, Alberto Sangiovanni-Vincentelli, Scheduling the FlexRay

Bus Using Optimization Techniques, The 46th IEEE ACM
Design Automation Conference, San Francisco, CA, July 2009,
pages 874-877.

[15] Martin Lukasiewycz, Michael Glaß, Jürgen Teich, Jürgen Teich,
FlexRay Schedule Optimization of the Static Segment, In
CODE + ISSS, 2009.

[16] Shan Ding, Naohiko Murakami, Hiroyuki Tomiyama, Hiroaki
Takada, A GA-based scheduling method for FlexRay systems,
The 5th ACM International Conference on Embedded Software,
September 18-22, 2005, Jersey City, NJ, USA

[17] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, Bus access

optimisation for FlexRay-based distributed embedded systems,
The Conference on Design, Automation and Test in Europe, April
16-20, 2007, Nice, France.

[18] H. Kopetz. Event-triggered versus time-triggered real-time

systems, Proceedings of the International Workshop on Operating
Systems of the 90s and Beyond, LNCS vol. 563, Springer-Verlag,
London, UK, 1991, pp. 87–101.

[19] Mathias Rausch, FlexRay Grundlagen Funktionsweise
Anwendung, 1st ed., Hanser, Munich, Germany, 2008

[20] Graphical Modeling Framework. http://www.eclipse.org/gmf/

[21] Phillippe Kruchten, Architectural Blueprints – The 4+1 View

Model of Software Architecture, IEEE Software vol.12, no. 6,
1995, pp. 42-50

