
MT-Scribe: A Flexible Tool to Support Model Evolution
Yu Sun

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL 35294

yusun@cis.uab.edu

Jeff Gray
Department of Computer Science

University of Alabama
Tuscaloosa, AL 35487

gray@cs.ua.edu

Jules White
Department of Electrical and Computer Engineering

Virginia Tech
Blacksburg, VA 24061

julesw@vt.edu

ABSTRACT
Model evolution is an essential activity in software system
modeling, which is traditionally supported by manual editing or
writing model transformation rules. However, this process
presents challenges to those who are unfamiliar with a model
transformation language or abstract syntax definitions. This
demonstration presents an approach to ease the implementation
of model evolution tasks by recording and analyzing
demonstrated end-users behavior.

Categories and Subject Descriptors
D.2.2-2.6 [Software Engineering]: Design Tools and
Techniques; Programming Environments; I.6.5 [Simulation and
Modeling]: Model Development

General Terms
Algorithms, Design, Languages.

Keywords
Model evolution, demonstration, MT-Scribe.

1. INTRODUCTION
As a high-level representation for software artifacts, models play
an increasingly significant role in the whole software lifecycle.
Instead of drawing models on paper and white boards, a number
of formal and informal modeling tools have been developed to
support various types of modeling activities, ranging from basic
functions such as visual editing and syntax / semantic checking,
to the more advanced feature of aiding code generation in the
context of Model-Driven Engineering [1].

During the modeling process, models must inevitably change
and evolve for different purposes. For instance, a system
requirement model has to be modified occasionally to adapt the
new requirements from the end-users; a system design model is
often changed to evaluate the different design decisions or to
optimize its internal structure (i.e., refactoring); if a software
system is generated directly from models, all of its maintenance
activities might involve changing its high-level models.
Therefore, model evolution has become an indispensible activity
when using models to support software development.

However, the tools to support model evolution are not well-
developed as other general model tools. In most situations,
manual evolution has to be done through the basic operations
provided by the editing environment, which is tedious, error-
prone and time consuming, particularly when a large amount of

model elements need to be changed (e.g., scaling up a model by
adding one thousand new elements). An alternative to efficiently
evolve models is to use model transformation languages [3],
because model evolution is actually a type of model
transformation (i.e., transform a model from one configuration
to another configuration, or from an old state to a new state).
Using model transformation languages, a set of transformation
rules can be defined to specify how a source model should be
changed and evolved to the desired target model. Executing the
rules leads to an automatic model evolution process.

Although model transformation languages are very powerful and
expressive to handle various kinds of model evolution tasks,
using transformation languages is not always the perfect
solution, due to the steep learning curve of the languages and the
need to deeply understand the abstract syntax or semantics of the
models (e.g., the metamodel definitions). Because many
potential model users (e.g., requirements engineers, domain
experts) are not necessarily software engineers or programmers,
learning transformation languages and understanding the formal
syntax definitions may be beyond their capability. Such
inflexibility may prevent some users from realizing model
evolution tasks for which they have extensive domain
experience.

To overcome such problems and to simplify the realization of
model transformation to support model evolution, we have been
investigating the idea of Model Transformation By
Demonstration (MTBD) [6]. Tool support, such as presented in
this demonstration, can assist general model users (e.g., domain
experts and non-programmers) in realizing model evolution in a
flexible way, without knowing a specific model transformation
language or the abstract syntax definition.

2. RELATED WORK
To address the challenges inherent in using model
transformation languages, Model Transformation By Example
(MTBE) has been proposed [4][5]. Rather than writing
transformation rules manually, MTBE enables users to setup
interrelated mappings between the source and target model
instances, and the transformation rules are semi-automatically
generated.

However, the current state of MTBE research still has several
limitations that prevent it from being a widely used modeling
approach to support model evolution. The semi-automatic
generation often leads to an iterative manual refinement of the

generated rules; therefore, the model transformation designers
are not isolated completely from knowing the transformation
languages and the metamodel definitions. In addition, the
inference of transformation rules depends on the given sets of
mapping examples (i.e., the model inference is only as good as
the seeded examples). In order to obtain a complete and precise
inference result, one or more representative examples must be
available for users to setup the prototypical mappings, but
seeding the process with such examples is not always an easy
task in practice. Furthermore, current MTBE approaches focus
on mapping the corresponding concepts between two different
domains without handling complex attribute transformations.
For instance, in practice, it is quite common to transform an
attribute in the source model to another in the target model with
some arithmetic or string operations, which is expressed by
imperative transformation rules in a transformation language.
Unfortunately, these imperative expressions can only be added
manually to the generated rules using current MTBE
approaches. The related work mentioned here primarily has been
applied to exogenous model transformation (i.e., transformation
of model instances from different metamodels), but they are not
as beneficial for inferring the refinements that are typical of
model evolution tasks where the source and target models are
from the same domain.

Another work has been described by Brosch et al. in [7], which
uses an example-based approach to address model
transformation tasks. Because it supports model transformation
within the same domain, it also has potential to be applied in
model evolution scenarios. However, the user feedback step may
not be at the proper level of abstraction in their approach, and
complex attribute transformation is not provided.

3. MTBD SOLUTION
The MTBD idea derives from MTBE. Instead of inferring the
rules from a set of interrelated mappings between the source and
target models, users are asked to demonstrate how the model
transformation should be done by directly editing (e.g., add,
delete, update) the source model to simulate the transformation
process step-by-step and changing it into the desirable target
model. A recording engine captures all of the user’s operations
during the demonstration, and then the inference engine infers
the user’s intention and generates a transformation pattern from
the recorded operations. This generated pattern can be reused
and executed by the engine in any model instance to carry out
the model transformation.

As an implementation of the MTBD idea, MT-Scribe is an
Eclipse plug-in for GEMS (Generic Eclipse Modeling System)
[8]. It consists of the following main steps, as shown in Figure 1.

Step 1 – User Demonstration and Recording. Users first give
a demonstration by directly editing a model instance (e.g., add a
new model element or connection, modify the attribute of a
model element, connect two model elements) to simulate an
evolution task. During the demonstration, users are expected to
perform operations not only on model elements and connections,
but also on their attributes, so that the attribute evolution can be
supported. An attribute refactoring editor has been developed to
enable users to access all the attributes in the current model
editor and specify the desired transformation (e.g., string and
arithmetic computation). At the same time, an event listener is
developed to monitor all the operations occurring in the model
editor and collect the information for each operation in
sequence.

Step 2 – Operation Optimization. The list of recorded
operations indicates how a model evolution should be
performed. However, not all operations in the list are
meaningful. Users may perform useless or inefficient operations
during the demonstration. For instance, without a careful design,
it is possible that a user first adds a new element and modifies its
attributes, and then deletes it in another operation later, with the
result being that all the operations regarding this element
actually did not take effect in the transformation process and
therefore are meaningless. Thus, after the demonstration, the
engine optimizes the recorded operations to eliminate any
meaningless actions.

Step 3 – Pattern Inference. With an optimized list of recorded
operations, the transformation can be inferred. Because the
proposed approach does not rely on any model transformation
languages, it is not necessary to generate specific transformation
rules, although that is possible. Instead, we generate a
transformation pattern, which summarizes the precondition of a
transformation (i.e., where a transformation should be done) and
the actions needed in a transformation (i.e., how a
transformation should be done).

Step 4 – User Refinement. The initial pattern inferred is
specific to the demonstration and is usually not generic and
accurate enough, due to the limitation on the expressiveness of
the user demonstration, so users are permitted to refine the
inferred transformation by providing more feedback for the
desired transformation scenario. For instance, users could give
more restrictive preconditions on the desired evolution, such as
replace element A only if A has no incoming or outgoing
connections, add new element B in C only when the attribute
value of C is greater than 200. Users can also identify which
operations should be generic (i.e., operations should be repeated
as long as appropriate model elements are available, rather than
being executed only once). All the user refinements are still
performed at the model instance level without explicitly
modifying the metamodel, after which a transformation pattern
will be finalized and stored in the pattern repository for future
use.

Figure 1. Overview of MTBD

Step 5 – Pattern Execution. The final generated patterns can be
executed on any model instances. Because a pattern consists of
the precondition and the transformation actions, the execution
starts with matching the precondition in the new model instance
and then carries out the transformation actions on the matched
locations of the model.

Step 6 – Correctness Checking and Debugging. Although the
location matching the precondition guarantees that all

transformation actions can be executed with necessary operands,
it does not ensure that executing them will not violate the
syntax, semantics definitions or external constraints. Therefore,
the execution of each transformation action will be logged and
the model instance correctness checking is performed after every
execution. If a certain action violates the metamodel definition,
all executed actions are undone and the whole transformation is
cancelled. Finally, an execution debug has been proposed as part
of MTBD to aid detecting errors in model transformations.

Figure 2b. Apply the generated pattern to evolve a model

instance from one state (upper) to a new state (lower)

4. DEMONSTRATION OVERVIEW
The demonstration will be structured to contain the following
parts through both a PowerPoint presentation and a live example
of several case studies demonstrating use of MT-Scribe.

Part 1 - Motivation for MT-Scribe. The background
information about model evolution and the traditional
approaches to support model evolution will be given, followed

by an introduction to the problems associated with manual
evolution and using model transformation languages. We will
also briefly introduce MTBE and its limitations to highlight the
motivation of MT-Scribe. A model evolution sample problem in
a simple domain will be used as a motivating example.

Part 2 - Overview of MT-Scribe. We will give an overview of
MT-Scribe, including the basic MTBD idea and its main steps.
Then, we will demonstrate how to use MT-Scribe to solve the
motivating example. The demonstration will explain the main
implementation details including the GEMS modeling platform,
the architecture of MT-Scribe, and algorithms used.

Part 3 - More Demos of MT-Scribe. The presentation will
proceed by demonstrating several representative model
evolution tasks in different domains. Each example will be done
from the demonstration, to applying the generated pattern on a
new instance to support the desired evolution task as shown in
Figure 2. We will provide MT-Scribe solutions for common
model evolution tasks in model refactoring, model scalability
[2], and model layout management. The modeling domains
range from the general-purpose modeling area such as UML, to
domain-specific modeling scenarios such as embedded systems
and cloud computing.

Part 4 - Summary of MT-Scribe. The presentation will
conclude by summarizing the tool, and identifying its
advantages and disadvantages. The future work and research
direction will be mentioned as well.

5. ACKNOWLEDGEMENT
This work is supported by an NSF CAREER award (CCF-
0643725).

6. REFERENCES
[1] Schmidt, D.: Model-driven engineering. IEEE Computer, vol.

39, no. 2, pp. 25-32, 2006
[2] Gray, J., Lin, Y., Zhang, J., Nordstrom, S., Gokhale, A.,

Neema, S., Gokhale, S.: Replicators: Transformations to
address model scalability. In Proceedings of the International
Conference on Model-Driven Engineering Languages and
Systems, Montego Bay, Jamaica, pp. 295-308, 2005.

[3] Sendall, S., Kozaczynski, W.: Model transformation - The
heart and soul of model-driven software development. IEEE
Software, Special Issue on Model Driven Software
Development, vol. 20, no. 5, pp. 42-45, 2003.

[4] Balogh, Z., Varró, D.: Model transformation by example using
inductive logic programming. Software and Systems
Modeling, vol. 8, no. 3, pp. 347-364, 2009.

[5] Strommer, M., Wimmer, M.: A framework for model
transformation by-example: Concepts and tool support. In
Proceedings of the 46th International Conference on
Technology of Object-Oriented Languages and Systems,
Zurich, Switzerland, July 2008, pp. 372–391.

[6] Sun, Y., White, J., Gray, J.: Model transformation by
demonstration. In Proceedings of International Conference on
Model Driven Engineering Languages and Systems, Denver,
CO, pp. 712-726, 2009.

[7] Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M.,
Kappel, G., Retschitzegger, W., Schwinger, W.: An Example
is Worth a Thousand Words: Composite Operation Modeling
By-Example. In Proceedings of International Conference on
Model Driven Engineering Languages and Systems, Denver,
CO, 2009.

[8] Generic Eclipse Modeling System (GEMS).
http://www.eclipse.org/gmt/gems/

Figure 2a. Demonstrate a model evolution task

