
Quality-Aware Academic Research
Tool Development

Hyun Cho and Jeff Gray
Department of Computer Science

University of Alabama
Tuscaloosa, AL, U.S.A

hcho7@cs.ua.edu, gray@cs.ua.edu

Yu Sun
Department of Computer and Information Science

University of Alabama at Birmingham
Birmingham, AL, U.S.A

yusun@cis.uab.edu

Abstract— Many organizations have adopted several different
kinds of commercial software tools for the purpose of developing
quality software, reducing time-to-market, and automating labor
intensive and error-prone tasks. Academic researchers have also
developed various types of tools, primarily as a means toward
providing a prototype reference implementation that corresponds
to some new research concept. In addition, academic researchers
also use the tool building task itself as a mechanism for students
to learn and practice various software engineering principles
(e.g., requirements management, design, implementation, testing,
configuration management, and release management) from
building the tools. Although some academic tools have been
developed with observance of sound software engineering
practices, most academic research tool development still remains
an ad hoc process because tools tend to be developed quickly and
without much consideration for quality. In this paper, we present
several quality factors to be considered when developing software
tools for academic research purposes. We also present a survey of
tools that have been presented at major conferences to examine
the status quo of academic research tool development in terms of
these factors.

Keyword; Quality Factor, Academic Software Development,
Evaluation

I. INTRODUCTION
Academic research tool development is one way to

showcase and promote the experimentation of newly
introduced research concepts. Many tools have been developed
in academia, and some of them have been commercialized
successfully. For example, Simulation Program with Integrated
Circuit Emphasis (SPICE) [12] is a well-known circuit
simulation tool and widely used in academia and industry.
SPICE was developed at the Electronics Research Laboratory
of the University of California, Berkeley, and the first paper
was published in 1973. The first commercial version of SPICE
was introduced in 1990 under the name of ISPICE and then
Microsim announced PSPICE, which was developed based on
SPICE 3. Statistical Package for the Social Sciences (SPSS)
[23] is another example of successful commercialization from
the foundation of an academic research tool. However, most
tools disappear from focus or are no longer maintained after the
research on a specific project ends. The reason for this lack of

continuity of tool maturation is that academic tool development
has different purposes when compared with industrial software
development. The goal of academic tool development is often
to implement a proof-of-concept prototype or provide a context
for experimentation, rather than developing quality software for
commercial use. In addition, tools tend to be developed with
small budgets, inexperienced programmers (normally students),
and without well-defined processes. Thus, academic tools are
sometimes considered to be error-prone and difficult to
install/run.

However, some researchers have proposed and
experimented with improving software quality in academia by
assessing the quality of academic software and teaching
development process and methodology to student developers.
Padua [13] introduced comprehensive quality assurance
procedures for measuring the quality of course projects
objectively and effectively. Other academic researchers have
adopted the Team Software Process (TSP) [25], which is a
comprehensive methodology for team programming proposed
by the Software Engineering Institute. Some initial reports in
using TSP have shown that students produce quality software
successfully when following the TSP principles [4][6][9].
However, most of these efforts targeted course assignments or
projects, rather than the specific case of academic research tool
development, which has slightly different goals and
characteristics. Both course assignments and academic research
tool development require heavy student involvement. Students
usually do not have sufficient knowledge about development
processes or enough experiences about specific domains [1][5].
Unlike course projects, research tool development often
combines one or more other research projects and has a longer
lifecycle than course projects [5]. In addition, research software
has higher potential to be commercialized than a short-term
focused class project.

In order to emphasize the importance and highlight the key
needs for developing quality research tools in academia, we
propose quality factors for academic research tool
development. Using these quality factors as comparison
criteria, we conducted a survey of 58 tools that were published
in major software engineering conferences. The purpose of this
survey was to assess the status quo of academic research tool

development. The rest of the paper is organized as follows:
Section II introduces suggested quality factors for academic
tool development from engineering and business perspectives.
Section III presents the results of academic research tool
assessment conducted for 58 tools, and Section IV offers a
discussion of the results and concludes the paper.

II. QUALITY FACTORS FOR ACADEMIC SOFTWARE
DEVELOPMENT

Many quality factors (e.g., performance, modifiability, and
portability) affect the design and implementation of a software
system and have been used to measure the success of software
development. However, the selection of quality factors are
subject to the context of the stakeholders so that software
systems can have different sets of quality factors according to
their purpose and need. In this section, we discuss quality
factors, from both development and business perspectives,
which we believe should be considered when developing
research tools in academia.

A. Quality Factors for Software Development
From the software development perspective, relating to

issues surrounding sound software engineering principles, we
suggest the following quality factors:

Interoperability or Integration with other tools.
Interoperability/Integration between tools is an enabler for
leveraging data reuse and/or shortening development time.
Thus, seamless tool interoperability/integration can assist
software engineers in developing quality software quickly and
cheaply. For example, when requirements of a software system
are analyzed and the system needs to be designed with object-
oriented analysis and design principles, a software engineer can
design the system with a UML tool. To capture and verify that
every requirement is modeled in the UML tool, the designer
could use a UML tool (e.g., IBM Rational TAU) that can be
integrated with requirements management tools (e.g., IBM
Rational DOORS [21]). The integration between a
requirements tool and a modeling tool can assist in
understanding how the requirements are reflected and realized
in the design. According to Howie et al. [7], interoperability
can be classified at several levels, such as physical, data-type,
specification-level, and semantic. Specification and semantic
level interoperability are related to the encapsulation of
knowledge representation and the design intent, respectively.
With development of commercial-level software tools, much
time and effort is allocated to design and implement a system
to support such levels, which may be beyond the scope of
academic tool development (in terms of schedule and available
resources). Although all tools cannot support such levels of
interoperability, tools should support at least data-type
interoperability, which allows sharing information through
electronic formats. For example, IBM Rational Rose [19] and
IBM Rational TAU [20] use their own file format to maintain
UML models such that they cannot load or modify files from
each other. However, both tools provide a feature, called XML
Metadata Interchange (XMI) [28], which is standardized by
OMG for exchanging metadata information, in order to support
data-type level interoperability.

Development Capability. Measuring the capability of
software development is one way to estimate software quality
and productivity. Several software development measurement
models are available for assessing the maturity level of
software development, acquisition and utilization (e.g., CMMI
[24], ISO 9000-3 [26], and ISO/IEC 15504 (i.e., SPICE) [27]).
In general, while spending several years in measuring the
maturity level of their organization with these measurement
models, organizations become more capable to develop quality
software. But, for software development in academia, the
desired and appropriate maturity levels are different. Collofello
and Ng [3], as well as Rout and Seagrott [16] reported the
assessment results from their student team projects. They used
CMM and SPICE, respectively, as the assessment model. They
reported that most projects achieved Level 2 capability, which
indicates that the software development is stable and repeatedly
manageable. Some projects reached Level 3 if they were well
guided. However, they found that following formal software
development processes may not be appropriate for academic
software development. Many researchers [2][8] have
experimented to find the appropriate development process for
an academic environment. A common finding is that at least
two practices should be kept during the tool development -
software configuration management (SCM) and change/defect
management (CM/DM). SCM plays important roles in
identifying configuration items and managing baselines of the
source code. Additionally, SCM supports automated build
management. CM/DM manages change requests and defects.
Normally, CM/DM is integrated with SCM to maintain
information about how changes or defects affect the
configuration items. As SCM and CM/DM cover all software
development practice, they are called umbrella practices.

Source Code Quality. Many researchers have proposed
various metrics to measure the quality of source code
quantitatively. Uncommented Lines of Code (ULOC), McCabe
Complexity [10][11], Halstead Complexity, and File/Class
count are the typical metrics for source code quality
measurement. Furthermore, the conformity of programming
styles, which guide how to name user-defined concepts (e.g.,
class, methods, and variables) and how to comment the source
code, is another essential factor to measure source code quality,
especially regarding readability and maintainability.

B. Quality Factors from Business Perspective
In this section, we examine the quality factors that could

lead to the success of academic research tools from the
business perspective. Most of these suggestions are obvious
candidates, but still remain uncovered by many research tool
projects.

Sustainability. Many believe that the lifecycle of academic
tools is short and lasts only when the research is in progress.
Thus, sustainability is one of the most important factors to
assure potential users that tools will be supported as long as
there are users. When commercial tool vendors are being asked
to present their tools, a common strategy to begin the
presentation is to introduce the company including the history
of the company. The goals of this introduction are advertising
their company as well as stressing the sustainability of the
company and its tools. Thus, to be a successful academic

Identify applicable sponsor/s here. (sponsors)

research tool, at least a small amount of effort and time (e.g.,
conforming to the latest OS and language version) should be
invested for sustaining the tool over years.

Technical support. Responsive and accurate technical
support can improve user satisfaction greatly and help collect
useful information for find defects and future enhancement of
the tool. However, technical support for every request may not
be feasible in academia due to the lack of time and supporters.
Thus, systematic technical support such as a Frequently Asked
Question (FAQ) list, and a user-supported mailing list, should
be considered.

Installability. Run-time environments of end users can be
different from development environments so that most
commercial tools are distributed as installer packages, which
contain the required run-time environments for using the tools.
Considering the smaller size and complexity of research tools,
distributing tools by an installer may not be necessary.
However, if tools are not distributed as an installer, a sufficient
amount of information should be provided in the form of an
installation guide.

Licensing. Having full understanding of every license
policy is unnecessary and difficult because they are written
with legal terms and the interpretation may vary case by case.
Normally, the research community prefers to use free and/or
open source licenses for several reasons, such as sharing
research results freely and shortening development time by
reusing existing code. However, the use of free and open
source licenses without careful consideration may cause
problems if a tool is later commercialized. Thus, researchers
should be careful to select the license type for their tools and
understand the ramifications of licensed source code, even
though they are free and open.

III. SURVEY AND RESULTS

A. Survey Approach
For assessing the maturity of academic research tool

development capability and business quality, 58 tools were
selected from the papers that were published over the past five
years at the following conferences: the International
Conference on Software Engineering (ICSE), the Foundations
of Software Engineering (FSE), the Asia-Pacific Software
Engineering Conference (APSEC), the European Conference
on Object-Oriented Programming (ECOOP), the Object-
Oriented Programming, Systems, Languages & Applications
(OOPSLA), the International Conference on Objects, Models,
Components and Patterns (TOOLS), and the International
Workshop on Academic Software Development Tools and
Techniques (WASDeTT). 83% of the tools were developed
from schools in Europe and North America, and 66% of tools
were introduced at ICSE, TOOLS, and WASDeTT. 26% of the
tool development was supported by academic funding, and
10% was funded by both academia and industry. Table I shows
the summary of tool selection.

Tool Categories. 24% of the tools were implemented for
Model-Driven Engineering [18], 21% for program analysis and
maintenance, 19% for new programming languages, and 13%
for testing frameworks. Tools were implemented in various

executable types. 53% of the tools were implemented as
independent applications and 24% of the tools were developed
as Eclipse plug-ins. 37% of the tools were developed in Java
and 15% of the tools used C/C++ for their implementation.
72% of the tools were developed by less than 6 engineers.

To assess the maturity of software development capability
and business quality, tools were examined in three categories
(e.g., development capability, code quality, and business
quality factor). Data was collected by retrieving information
from each tool web site and reviewing contents posted on the
web, as well as published papers.

Development Capability. As shown in Table I, 30 tools
were developed by European academia and 18 tools were
developed by academia in North America. Seven tools were
presented by Asian academic researchers. Because each
academic organization is geographically distributed, on-site
capability assessment is not feasible. Thus, we assessed the
capability by reviewing documents posted on the web
including published papers. We reviewed six major documents
where available: requirements, design, installation, user guide,
developers guide, and project plan. The main goal of document
review is to check the existence of documents instead of
reviewing the contents of the documents or ranking the
capability. However, because organizations provide
documentation with different formats and some organizations
use one or multiple files for documentation (e.g., using one file
for both an installation guide and user’s guide), we examined
every document to check the existence of specific content. In
addition, we examined the application of CM/DM and SCM as
a means for assessing process management. The use of
CM/DM and SCM helps to keep the integrity of the
development deliverables and helps to assess the tool quality
such as defect types/density and error-prone modules.

Code Quality. To measure the quality of source code, five
metrics were selected: Lines of Code (LOC), which counts all
lines of code including blanks and comments, McCabe’s
Cyclomatic Complexity, Comment to Code Ratio, Executable
Statement to Code Ratio, and maximum nesting. LOC is used
for estimating the required efforts of maintenance and
normalizing other metrics [14]. McCabe’s Cyclomatic
Complexity [10][11] measures the complexity by counting the
number of independent paths in a module. If a module has
higher cyclomatic complexity values, it has the potential to
produce more errors and be less understandable. Comment to
Code Ratio is another metric to measure documentation,
especially at the source code level, and comments help to
improve the understandability of code and generate documents
such as API references. Executable Statement to Code Ratio
measures the number of actual executable lines in code and
helps to understand the simplicity of the code. Maximum
nesting measures the nesting level of control structures (e.g., if,
while, for, switch, etc.) in a module, such that a module is
regarded as hard to understand and maintain if it has a high
value [17]. Because some of the selected tools have been
distributed without source code, the measurement was
performed on 25 out of 58 tools with Scitools Inc.’s
Understand [22].

Business Quality Factor. Because some of the business
quality factors are related to the development capability,
assessments for business quality factors overlap with
Development Capability assessment. For example, we assume
that technical support is provided through CM and email so
that we examined the existence of CM as well as the assigned
contacts for technical support. For assessing installability, we
checked the existence of an installation guide and the type of
the installation package. We consider a tool as installable if it is
distributed in the form of an executable installer (e.g.,
Windows install package) or installed through download (e.g.,
Eclipse Installer). In addition, most Java-based applications are
not distributed with a formal installer because most Java
applications can be installed and run just by creating a directory
and moving files from a zip/JAR into the directory. Finally, we
checked the maintenance period of the tools for assessing
sustainability and longevity of each tool.

B. Survey Result
This section provides an aggregate summary of the results

of our evaluation. The specific details and evaluation of the 58
tools is available on our web site at:
http://cs.ua.edu/graduate/hcho7/toolEval/data.xls. We strongly
encourage the developers of the examined tools to contact us if
we misunderstood the status of their tool, and we will correct

this data file from any informed contact.

Development Capability. Table II shows the results of
development capability assessment. As documents are the basic
input for the assessment, we examined the six types of
documents that are required to maintain the tools. See Table
II(a). Overall, documentation seems to be neglected in
academic tool development, which may not be a surprising
result. In fact, over 90% of the tools examined did not have
documents for requirements, design, implementation (or
developers guide), or a project plan. As design and
implementation documents explain the design concepts and the
development environments, maintainers may need to spend a
great amount of time and effort to understand the design and
configure the development environment if the documents are
not available. Regarding CM/DM and SCM, about 62% of the
tools were developed and maintained without using any form
of CM/DM and SCM, and about 21% of the tools used both
CM/DM and SCM. About 31% of the tools were developed
using at least one management system. See Table II(c)(d). Most
academic tool development teams prefer to use SVN for their
SCM tool, but various tools are used for CM/DM (e.g., GitHub
or Google Code). As shown in Table II(b), about 42% of the
tools were maintained for two years so that we investigated the
relationship between maintenance periods and the use of
CM/DM and SCM. Surprisingly, the application of CM/DM

 APSEC ECOOP FSE ICSE OOPSLA TOOLS WASDeTT Total
Asia 3 3 1 7

North America Asia 1 1
Europe 1 3 3 3 2 6 12 30

North America Europe 1 1
North America 5 1 5 1 2 4 18
South America 1 1

Total 4 9 4 11 3 10 17 58

TABLE I. SUMMARY OF TOOL SELECTION BY CONFERENCE AND REGION

(a) Documentation (b) Maintenance Period (c) RM
Document Type Available N/A

Requirement 0 58 (100%)
Design 3 55 (94%)

Installation Guide 20 38 (66%)
User’s Guide 24 34 (59%)

Developer’s Guide 5 53 (91&)
Project Plan 2 56 (97%)

Years Total
< 2 24
< 5 9
<10 3
>10 2
N/A 20

RM Total

Applied 18
N/A 40

(d) SCM (e) CM/DM

Location Tool Total

External SVN 7
Git 1

Internal
SVN 6
CVS 2
Git 1

N/A 41

Location Tool Total
External code.google 6

Codeplex.com 1
GitHub 2

Kenai.com 1
JIRA.com 1

Internal Bugzilla 3
Mantis 1
Trac 1

N/A 41

TABLE II. RESULTS OF DEVELOPMENT CAPABILITY ASSESSMENT

and SCM is not related to the length of the maintenance period.
About 80% of the groups who maintained their tools for less
than three years used CM/DM and SCM. In addition, only 40%
of the groups who used SCM managed their software release
within an SCM tool. Regarding sustainability, 41% of the tools
were maintained for less than two years, and only 5 tools are
maintained over 5 years. In addition, about 63% of the tools
that were maintained less than two years seemed to be
developed without any funding.

Code Quality. Due to source code availability, we
performed static analysis on 25 tools. The results of static code
analysis are summarized in Table III. Over half of the tools
were implemented with less than 50,000 lines of code, with an
average of 40% of the code corresponding to comments. See
Table III (a)(b). Particularly, one tool showed 1.83 in comment
to code ratio, which means that there are about 2 comment lines
per statement. All tools seem to have a low number for the
average cyclomatic complexity, but some tools showed high

numbers for maximum cyclomatic complexity. This implies
that the same modules need further decomposition for better
understandability and maintainability. See Table III (c)(d). In
addition, many tools seemed to have complex nesting structure.
About 60% of the tools showed five to ten nesting depths,
which indicates that five to ten control constructs are nested in
a module.

Business Quality Factor. The presence of an installation
guide and the readiness of an install package were reviewed for
installability. See Table III(g). 20 out of 58 tools provide
installation guides and eight tools were packaged as an
installer. Only 10% of the tools provide both an installation
guide and distributed as an installer. Regarding licensing, 62%
of the tools do not specify the license type of the tool. 64% of
the tools that are licensed use one of the following three
licenses: Eclipse Public License, GNU General Public License,
and GNU Less General Public License.

(a) Code Size (b) Comment to Code Ratio
Code Size (SLOC) Total

< 10,000 8
< 20,000 4
< 50,000 5
<100,000 4
<200,000 3
>200,000 1

Comment/Code Total
<0.3 6
<0.4 8
<0.5 7
<1.0 3
>1.0 1

(c) Avg. Cyclomatic Complexity (d) Max. Cyclomatic Complexity
ACC Total
<2.0 9
<3.0 11
<4.0 4
>5.0 1

MCC Total
< 10 2
< 20 4
< 30 7
< 50 2
<100 2
>100 8

(e) Max Nesting (f) Executable Statement to Code Ratio
Max Nesting Total

< 5 3
<10 15
<20 6

Comment/Code Total
<0.2 5
<0.3 15
<0.4 5

(g) Installability (h) License

 Installation Guide
 N/A Y

Installer N/A 36 14 50
Y 2 6 8

 38 20 58

License Type Total
Apache License 2

Boost license 1
BSD license 1

Eclipse Public License 4
Eiffel Forum License 1
Erlang Public License 1

GNU General Public License 5
GNU Lesser General Public License 5

MIT License 1
Mozilla Public License 2

Private License 1

TABLE III. RESULTS OF STATIC CODE ANALYSIS

IV. CONCLUSION
The goal of this paper is to suggest quality factors for

academic software development, especially research tool
development. We presented quality factors in terms of software
development and business perspectives, and then conducted a
survey and assessment to understand quantitatively the current
state of academic research tool development. Robillard and
Robillard [15] conducted a similar survey in 1999 with a small
number of course and academic projects. Although about ten
years have passed since they published their survey, there
seems to be little progress in the approach toward academic
research tool development because our more recent findings are
similar to their earlier findings.

First of all, as might be expected, documentation is largely
neglected in research tool development. Over 90% of the tools
examined do not have documents for requirements and design.
We found some requirements and design concepts from
published papers. But, as requirements and design concepts are
described briefly and superficially in the papers (and the total
requirements spread across several papers), it was often
necessary to read all related papers to understand some of the
requirements and design concepts for a tool. In addition, Ahtee
and Poranen [1] showed that lack of domain knowledge and
programming skill is the greatest barrier toward developing
quality software for academic research tools. Thus,
documentation should be emphasized when developing and
maintaining quality research tools. Well-documented software
can help reduce the risks that are pointed out by Ahtee and
Poranen.

Regarding development process management, it does not
seem to be a focus for research tool development, especially for
consideration of CM/DM, and SCM. Only 31% of the tools
were maintained under some form of CM/DM and SCM.
Recently, many open source tools are available for CM/DM
and SCM, and some companies such as Google provide these
management systems for free when a development group hosts
its projects on their repository. Thus, the use of CM/DM and
SCM systems should be encouraged for collaborating with
colleagues, managing change requests and defects. Regarding
code quality, the code quality seems to be adequate, in general.
However, most tools showed relatively high values in
maximum cyclomatic complexity and maximum nesting,
which imply that modules need to be refactored for better
maintainability, testability and reusability. In terms of business
quality factors, tool developers need to consider the
sustainability of their tools and have a plan for technical
support.

As academic research tools often continue to receive
interest after their development, tools need to be maintained in
an executable or buildable form over years. This is another
reason for adopting CM/DM and SCM systems in academic
research tool development. In addition, open-free licenses are
commonly used for academic research tools, but most research
groups failed to understand the importance of licensing - 62%
of tools are distributed without license policies. Although full
understanding of licensing is not necessary for academic
research tool development, the license policy should be
carefully specified anticipating any future commercialization.

While surveying academic software development, we found
academic research tool development faces several issues such
as lack of funding, short-term focus of research projects, and
lack of software engineering experiences among student
developers. To resolve the first two causes, support from
outside academia is required in the form of funding and/or
collaboration with industry. However, the last cause can be
resolved by encouraging and monitoring development groups
to follow software engineering practices and being more aware
of the need for quality representation of their work.

Finally, the survey research is performed by reviewing
information posted on each tool’s web site and information in
the published papers. Because of this inexact process of
obtaining information on research tools, generalization of the
results of our survey should be done with caution. However,
the breadth and diversity of our study may suggest that the
current state of research tool development still suffers from
several quality issues.

ACKNOWLEDGMENT
This work is supported by NSF CAREER award CCF-

1052616.

REFERENCES
[1] T. Ahtee and T. Poranen, “Risks in Students’ Software

Projects,” In Proceedings of the 22nd Conf. on Software
Engineering Education and Training (CSEET ‘09), Hyderabad,
India, pp. 154-157, February 2009.

[2] R.J. Back, L. Milovanov, and I. Porres, “Software Development
and Experimentation in an Academic Environment: The Gaudi
Experience,” In Proceedings of the 6th International Conference
on Product Focused Soft. Process Improvement (PROFES 2005),
Oulu, Finland, Springer LNCS 3547, pp. 414-428, June 2005.

[3] J.S. Collofello and C.H. Ng, “Assessing the Process Maturity
Utilized in Software Engineering Team Project Courses,” In
Proceedings of Frontiers in Education Conference, San Juan,
Puerto Rico, vol.1, pp.12A9/5-12A9/9, November 1999.

[4] T. Hilburn and M. Towhidnejad, “A Case for Software
Engineering,” In Proceedings of the 20th Conference on
Software Engineering Education & Training (CSEET ‘07),
Dublin, Ireland, pp. 107-114, July 2007.

[5] V. Hoffmann, H. Lichter and A. Nyßen, “Processes and
Practices for Quality Scientific Software Projects,” In
Proceedings. of the Third International Workshop on Academic
Soft. Development Tools and Technique (WASDeTT-3), Antwerp,
Belgium, pp. 95-108, September 2010.

[6] W.L. Honig, “Teaching Successful ‘Real-World’ Software
Engineering to the ‘Net’ Generation: Process and Quality Win,”
In Proceedings of the 21st Conference on Software Engineering
Education and Training (CSEET ’08), Charleston, SC, pp.25-32,
April 2008.

[7] C.T. Howie, J.C. Kunz, and K.H. Law, “Software
Interoperability,” Tech. Report F30602-89-C-0082, Depart. of
Defense Information Analysis Center, November 1996.

[8] D. Liu, S. Xu, and M. Brockmeyer, “Investigation on Academic
Research Software Development,” In Proceedings of the 2008
International Conference on Computer Science and Software
Engineering, vol.2, Wuhan, China, pp. 626-630, December 2008.

[9] B. von Konsky and M. Robey, “A Case Study: GQM and TSP in
a Software Engineering Capstone Project,” In Proceedings of the

18th Conference on Software Engineering Education & Training
(CSEET ‘05), Ottawa, Canada, pp. 215-222, April 2005.

[10] T.J. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308-320, July 1976.

[11] T.J. McCabe and C.W. Butler, “Design Complexity
Measurement and Testing,” Communications of the ACM, vol.
32, no. 12, pp. 1415-1425, December 1989.

[12] L.W. Nagel and D.O. Pederson, “SPICE (Simulation Program
with Integrated Circuit Emphasis),” Memorandum No. ERL-
M382, University of California, Berkeley, April 1973.
http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

[13] W. Padua, “Using Quality Audits to Assess Software Course
Projects,” In Proceedings of the 22nd Conference on Software
Engineering Education and Training (CSEET ‘09), Hyderabad,
India, pp. 162-165, February 2009.

[14] J. Rosenberg, “Some Misconceptions About Lines of Code,” In
Proceedings of the 4th International Symposium on Software
Metrics (METRICS '97), Albuquerque, NM, pp. 137-142,
November 1997.

[15] P.N. Robillard and M. Robillard, “Improving Academic
Software Engineering Projects: A Comparative Study of
Academic and Industry Projects,” Annals of Software
Engineering, vol. 6, April 1999, pp. 343-363.

[16] T.P. Rout and J. Seagrott, “Maintaining High Process Capability
in a Student Project Course,” In Proceedings of the 20th
Conference on Software Engineering Education & Training
(CSEET ‘07), Dublin, Ireland, pp.37-44, July 2007.

[17] A. Schroeder, “Integrated Program Measurement and
Documentation Tools,” In Proceedings of the 7th International
Conference on Software Engineering (ICSE '84), Orlando, FL,
pp. 304-313, March 1984.

[18] D. Schmidt, “Model-Driven Engineering,” IEEE Computer, vol.
39, no.2, pp. 25, February 2006.

[19] IBM Rational Rose, http://www-
01.ibm.com/software/awdtools/developer/rose/

[20] IBM Rational TAU, http://www-01.ibm.com/software/awdtools/tau/
[21] IBM Rational DOORS, http://www-

01.ibm.com/software/awdtools/doors/
[22] SciTools Inc., Understand, http://www.scitools.com/
[23] SPSS, http://www.spss.com/corpinfo/history.htm
[24] CMMI, http://www.sei.cmu.edu/cmmi/
[25] Team Software Process (TSP), http://www.sei.cmu.edu/tsp/
[26] ISO 9000-3,

http://www.iso.org/iso/catalogue_detail.htm?csnumber=26364
[27] ISO 15504,

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38932
[28] XMI, http://www.omg.org/spec/XMI/

