
Model Transformation by Demonstration
Yu Sun

Department of Computer and Information Sciences
University of Alabama at Birmingham

Birmingham, AL 35294
yusun@cis.uab.edu

Abstract
A common approach toward model transformation is to write
transformation rules in specialized languages. However, their
usage may present challenges to those who are unfamiliar with a
specific model transformation language or a particular
metamodel definition. The research described in this paper
makes a contribution toward simplifying the creation of model
transformations by recording and analyzing the operational
behavior exhibited by an end-user.

Categories and Subject Descriptors I.2.2 [Artificial
Intelligence]: Automatic Programming; I.6.5 [Simulation and
Modeling]: Model Development

General Terms Algorithms, Design, Languages.

Keywords Model transformation, demonstration.

1. Background and Motivation
Model transformation has emerged as a core part of Model-
Driven Engineering (MDE). Examples of model transformation
include code generation from models, model synchronization
and mapping, model evolution, and reverse engineering. Several
approaches have been developed to perform model
transformations, such as: direct model manipulation,
intermediate representation, and transformation language
support [1].

Direct model manipulation accesses the internal structure of a
model instance using an API provided by a host modeling tool,
and encodes the transformation procedures in a general-purpose
programming language (GPL). This approach is not feasible for
end-users who do not have programming experience, because
GPLs lack the high-level abstractions that are needed by end-
users to specify transformations. In addition, the power of a
transformation is often restricted by the supported API within
the modeling tool.

Many modeling tools support importing and exporting model
instances in the form of XMI. It is possible to use existing XML
tools (e.g., XSLT) to perform model transformations outside of a
modeling tool using XMI as an intermediate representation.
Although XSLT can be used to transform models, it is tightly
coupled to XML, requiring experience to define the
transformations using concepts at a lower level of abstraction.

A more common and popular approach toward implementing
model transformations is to specify the transformation rules by
using a model transformation language. Although most of these
languages are powerful, they still present several challenges to
users, particularly to domain experts and non-programmers.
Even though declarative expressions are supported in most
model transformation languages, they may not be at the proper
level of abstraction for an end-user, and may result in a steep

learning curve and high training cost. Furthermore, the
transformation rules are usually defined at the metamodel level,
which requires a clear and deep understanding about the abstract
syntax and semantic interrelationships between the source and
target models. In some cases, domain concepts may be hidden in
the metamodel and difficult to unveil [2]. These implicit
concepts make writing transformation rules challenging. Thus,
the difficulty of specifying metamodel-level rules and the
associated learning curve may prevent domain experts from
contributing to model transformation tasks from which they
have much domain experience.

The research described in this paper contributes a new approach
to simplify the realization of model transformations, enabling
general users (e.g., domain experts and non-programmers) to
specify model transformations without knowledge of a specific
model transformation language or metamodel definition.

2. Related Work
Model Transformation By Example (MTBE) [3] is an innovative
approach to address the challenges inherent from using model
transformation languages. Instead of writing transformation
rules manually, MTBE enables users to define a prototypical set
of interrelated mappings between the source and target model
instances. From those mappings, the metamodel-level
transformation rules can be inferred and generated semi-
automatically. Varró proposed a practical and efficient way to
realize MTBE by using inductive logic programming [4], [5].
The basic idea is to represent the initial mappings in the form of
logic clauses and then infer the transformation rules using a
logic programming engine. Similarly, Strommer and Wimmer
implemented an Eclipse prototype to enable generation of
transformation rules from the semantic mappings between
domain models [2], [6], [7]. Instead of using a logic
programming engine, their inference and reasoning process was
based on pattern matching.

However, the current state of MTBE research still has several
limitations. The semi-automatic generation often leads to an
iterative manual refinement of the generated rules; therefore, the
model transformation designers are not isolated completely from
knowing the transformation languages and the metamodel
definitions. In addition, the inference of transformation rules
depends on the given sets of mapping examples. In order to
obtain a complete and precise inference result, one or more
representative examples must be found for users to setup the
prototypical mappings, which is not always an easy task in
practice. Furthermore, current MTBE approaches focus on
mapping the corresponding domain concepts between two
different metamodels without handling complex attribute
transformations. Finally, the related work mentioned here
primarily has been applied to exogenous model transformation,
but they are not as beneficial for inferring the refinements that
are typical of endogenous model transformations where the
source and target models are from the same metamodel.

Copyright is held by the author/owner(s).
OOPSLA 2009, October 25-29, 2009, Orlando, FL, USA.
ACM 978-1-60558-768-4/09/10.

831

3. Goals and Objectives
The Model Transformation By Demonstration (MTBD) research
described in this paper further simplifies the model
transformation process initiated by MTBE. The contribution of
MTBD is a technique that will enable all model users (i.e., not
only model experts and programmers, but also domain experts
and non-programmers) to specify the desired model
transformations, without knowing any model transformation
language or metamodel definition. The realization of MTBD has
the potential to provide fully automatic generation of
transformation rules without manual refinement of a
transformation specification. MTBD will also be applicable to
both exogenous and endogenous model transformations,
enabling complex attribute computations. In addition, MTBD
can be applied to any model instance without being restricted by
the availability of appropriate source and target models.

4. Proposed Methodology
The core idea is a new technique that records user interactions
within a modeling tool and infers a representative model
transformation specification. Instead of inferring the rules from
a prototypical set of mappings (as done in MTBE), users are
asked to demonstrate how the model transformation should be
done by directly editing (e.g., add, delete, connect, update) the
model instance to simulate the model transformation process
step-by-step. The user transforms a source model to the target
model during the demonstration process. A recording and
inference engine will capture all user operations and infer a
user’s intention in a model transformation task. A
transformation pattern will be generated from the inference,
specifying the precondition of the transformation (i.e., where the
transformation should be done) and the sequence of actions
needed to realize the transformation (i.e., how the transformation
should be done). This pattern serves as an intermediate
transformation representation, which can be used to generate
different model transformation rules, code, data and other
necessary transformation artifacts. The final generated rules and
code can be reused in any model instance at any time.

5. Experimental Evaluation

The evaluation of MTBD will be based on three criteria –
completeness, correctness and simplicity. Regarding the first
two criteria, for each kind of model transformation (i.e.,
exogenous and endogenous model transformations), some
existing transformations written in a specific model
transformation language will be selected. For instance, the ATL
transformation zoo [8] provides a list of model transformation
scenarios that have been implemented by ATL (e.g., Class to
Relational, UML to OWL). MTBD will be used to automatically
generate the transformation rules. Given the same set of source
models, we can compare the target models produced by the two
approaches. The similarity between the two sets of target models
reflects the completeness and correctness of our approach. The
simplicity of MTBD will be evaluated by observing the time and
process for applying MTBD, as well as the scale of the
transformation rules to realize the same task. For example, the
size and complexity of an ATL transformation will be compared
to the relative effort (in terms of mouse clicks and time) to
specify the same transformation by demonstration.

6. Current Results
The current focus of this work is the implementation of
endogenous model transformation by demonstration. Our work
is implemented in an Eclipse-based domain-specific modeling

tool called GEMS (Generic Eclipse Modeling System) [9]. An
Eclipse plug-in has been developed, which partially realizes the
MTBD idea in endogenous model transformations. More
specifically, the current status of the MTBD prototype includes:
(1) a recording engine to completely capture all user operations
and related context; (2) an algorithm to optimize the recorded
operations, eliminating meaningless operations (e.g., an add
operation followed by a delete operation are both meaningless if
they operate on the same object); (3) the inference and
generation of a transformation pattern from the recorded
operations that describe the weakest precondition and the
transformation actions; (4) an algorithm to automatically match
a transformation precondition in any model instance, and
execute the necessary transformation actions; (5) support to infer
transformations with attribute operations; (6) a correctness
checking and undo mechanism to guarantee the correctness of
the transformation process; (7) fully automatic generation of a
transformation pattern, without iterative manual refinement.

We have applied our approach successfully to complete several
model refactoring tasks in sample domains, demonstrating
transformation correctness and simplicity improvement. More
detailed description of the examples and representative video
demonstrations are provided at the project’s web site, which is
available at: http://www.cis.uab.edu/softcom/mtbd.

Acknowledgment
This work is supported in part by an NSF CAREER award
(CCF-0643725).

References
[1] Sendall, S., Kozaczynski, W.: Model transformation - The

heart and soul of model-driven software development. IEEE
Software, Special Issue on Model Driven Software
Development, vol. 20, no. 5, pp. 42-45, Sep./Oct. 2003.

[2] Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards
model transformation generation by-example. In Proceedings
of the 40th Hawaii International Conference on Systems
Science, Big Island, HI, January 2007, pp. 285.

[3] Varró, D.: Model transformation by example. In Proceedings
of Model Driven Engineering Languages and Systems, Genova,
Italy, October 2006, pp. 410–424.

[4] Balogh, Z., Varró, D.: Model transformation by example using
inductive logic programming. Software and Systems Modeling,
vol. 8, no. 3, July 2009, pp. 347-364

[5] Varró, D., Balogh, Z.: Automating model transformation by
example using inductive logic programming. In Proceedings of
the 2007 ACM Symposium on Applied Computing, Seoul,
Korea, March 2007, pp. 978–984.

[6] Strommer, M., Wimmer, M.: A framework for model
transformation by-example: Concepts and tool support. In
Proceedings of the 46th International Conference on
Technology of Object-Oriented Languages and Systems,
Zurich, Switzerland, July 2008, pp. 372–391.

[7] Strommer, M., Murzek, M., Wimmer, M.: Applying model
transformation by-example on business process modeling
languages. In Proceedings of Third International Workshop on
Foundations and Practices of UML, Auckland, New Zealand,
November 2007, pp. 116–125.

[8] ATL Transformation Zoo.
http://www.eclipse.org/m2m/atl/atlTransformations/

[9] Generic Eclipse Modeling System (GEMS).
http://www.eclipse.org/gmt/gems/

832

