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Abstract. Software development has improved greatly over the past decades 
with the introduction of new programming languages and tools. However, 
software development in the context of industrial robotics is dominated by 
practices that require attention to low-level accidental complexities related to 
the solution space of a particular domain. Most vendor-specific robotics 
platforms force the developer to be concerned with many low-level 
implementation details, which presents a maintenance challenge in the context 
of making engineering changes to the robotics solution. Additionally, satisfying 
the timing requirements across the platforms of multiple robot vendors 
represents an additional challenge. We introduce our work using Domain-
Specific Modeling to support the control of industrial robots using models that 
are at a higher level of abstraction than traditional robot programming 
languages. Our modeling approach assists robotics developers to plan the 
schedule, validate timing requirements, optimize robot control, handle 
engineering changes, and support multiple platforms. 

Keywords: Domain-Specific Modeling, Robotics, Software Maintenance, 
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1 Challenges in Industrial Robotics 

Industrial robots have been applied widely in various domains to perform different 
tasks [4][9], such as welding robots used in the automobile industry, or assembly 
robots used in manufacturing factories. Robots are often controlled and programmed 
using textual and imperative robot programming languages that are customized 
environments from each robot vendor. Even with the implementation of a digital 
factory (i.e., a virtual representation of the manufacturing process and facility), most 
robotics languages are domain-specific languages designed by specific robot vendors 
(e.g., the KUKA [14] robot programming language, and RAPID [16] from ABB [15]), 
they are still at a low-level of abstraction. This requires a great deal of knowledge 
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about implementation and configuration details (e.g., the coordinates of the movement 
destination, the speed and acceleration of the movement, the ports to write and read 
data), which presents a host of challenges in robotics software development and 
maintenance. Based on our 20+ years of automotive industry experience, the 
following paragraphs describe what we have observed as the key challenges in 
supporting engineering changes in industrial robotics software (in particular, in an 
automotive factory context using digital factory methodologies). 
 

Challenge 1 – The Complexity of Adapting Engineering Changes Across 
Robotics Software Solutions. Similar to other types of software development, 
software evolution is also inevitable in robotics development. For instance, working 
on different types of products and work tasks, robots need to be modified frequently 
with different hardware parameters, environment configurations, and more 
importantly a different sequence of actions needed to address a new requirement on 
the assembly line. Changing and evolving the robot programs to adapt to new 
requirements is challenging, particularly when performing the changes on large-scale 
heterogeneous robotics systems. To make an engineering change across a specific cell 
of an assembly line, robotics programmers need to search through a collection of 
robot programs manually, locate the correct location of low-level configuration 
information, and make the correct modification corresponding to the new 
requirement. 
 

Challenge 2 – The Difficulty of Satisfying Timing Requirements and Optimizing 
Action Schedules for Cycle Time Optimization. The correct timing and scheduling 
configuration on a robotics system plays an essential role in multi-robot coordination. 
Consider the category of welding robots as an example, where each robot must finish 
its own task on time and ensure the robot next to it has the needed parts within a 
certain time target. Failure to meet a task deadline in the prescribed time will either 
cause unnecessary delays or trigger collision conflicts among different robots. In 
order to minimize the duration of completing a certain task, an optimized schedule for 
each robot is required to avoid unnecessary delays. However, due to a lack of native 
support for time in most robot programming languages, satisfying the correct timing 
requirements in robotics development has become a tedious, time-consuming and 
error-prone task that requires much manual tweaking and refined intuition in order to 
elaborate a successful implementation. The most commonly used approach in practice 
is to plan the schedule manually, and then hand it to robot developers who then 
implement the schedule plan manually. There are several current well-known 
automotive factories that still use standard spreadsheets for determining such timing 
considerations. Developers must write robot programs based on the timing 
requirements, and test the program in an ad hoc manner to obtain various timing 
measurements during commissioning. If the measurement indicates the violation of 
specific timing requirements, changes must be made either to the schedule or the 
robot programs. This process iterates until all the timing requirements are satisfied. 
This type of scenario, based on manual and iterative refinements, is ripe for 
application of model-driven techniques. 
 

Challenge 3 – The Challenge of Supporting Multiple Platforms. With multiple 
robot manufactures throughout a manufacturing facility, it is often necessary to swap 
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out robots from different vendors at different stations in a manufacturing cell. 
However, if each vendor uses a different robot programming language, the same task 
will have to be programmed multiple times in different languages. This requires much 
redundancy and maintenance of multiple programs for the same task – a situation that 
is fertile for creating software failures. A desired capability is to be able to describe 
the intellectual property associated with a robot task at a level that can be maintained 
and preserved across current vendors. Such a capability would also protect against 
obsolescence and allow integration of future robot platforms that may later emerge. 

We have designed a modeling, planning, and code generation tool suite that 
addresses the needs of these three challenges. This tool, called Automax, serves as the 
future input to our existing robotics optimization solution (called Robmax) that is 
currently deployed on over 3,000 industrial robots in “Body in White”1 shops at 
manufacturing facilities in the USA and Europe. The main objectives of our work 
described in this paper are: 1) to raise the level of abstraction in robotics 
programming and hide the low-level implementation details. This is done by 
capturing key domain concepts and constructing code frameworks and libraries, in 
order to facilitate multiple types of engineering changes on the manufacturing line; 2) 
to combine timing and scheduling information for robot programs, and provide timing 
analysis to ease the process of satisfying timing requirements; 3) to build a common 
representation for expressing robot control, from which automatic generation to 
specific vendor platforms is possible. 

An overview of the proposed solution will be given in Section 2, followed by the 
illustration of each key component in the solution from Section 3 to Section 5. Section 
6 summarizes the related work and Section 7 offers concluding remarks. 

2 Automax Overview 

Our solution to address the key challenges presented in Section 1 is to use Domain-
Specific Modeling (DSM) [3] to support robotics development. Raising the level of 
abstraction from programming languages to modeling languages has been shown to 
be an effective approach to attack the increasing complexity of software systems [1]. 
Domain-Specific Modeling Languages (DSMLs) [2] assist domain experts in focusing 
on the level of abstraction relevant to their problem space by providing notations and 
constructs tailored specifically to that domain, while removing the accidental 
concerns of a specific solution space. DSMLs help to represent the solution of the 
problem domain and reduce miscommunication between stakeholders by providing 
common abstractions and notations. 

Figure 1 is an overview of our solution. The core part of the solution is a graphical 
DSML defined by a metamodel specifically for the industrial robotics domain. Our 
modeling language captures the key configurations for robots, all types of actions an 
industrial automotive manufacturing robot can perform, as well as the scheduling and 
timing information. Compared with traditional robot programming languages (e.g., 
KUKA), this DSML is at a higher level of abstraction by hiding many low-level 
                                                           
1  Body In White refers to a phase of automotive manufacturing when the metal body of the car 

has been welded together, just before the addition of attached structures (e.g., doors) and 
prior to painting. 
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implementation details and extracting patterned program code fragments as abstract 
model concepts, so that users can specify the robot models using direct domain 
concepts. 

Instead of creating models using the DSML manually from scratch, users can start 
with the planning of the robot system timing requirements in the planner, followed by 
generating the base robot model automatically. On the other hand, with the existing 
robot control code, Automax’s future vision supports reverse engineering of the 
source code to generate the models as well as the timing information in the planner. 
Users can then operate on the models directly and make necessary changes. The 
actual implementation code can be generated automatically from the models for 
different platforms. 

 

 

Fig. 1. Overview of the Automax solution 

With models as the first-class entities to program robots, any engineering changes 
can be realized by modifying the robot models and re-generating the code, which is an 
alternative to changing the code manually across multiple robot programs at a lower 
level of abstraction. Additionally, because the timing and scheduling information has 
been incorporated into the robot models, the model provides a direct input to the 
scheduler, so that the timing can be estimated and validated. Moreover, the robot 
models are platform-independent, which enables multiple code generators for 
different robotics vendor platforms. 

Being different from the traditional top-down model-driven code generation 
framework from models to code, Automax connects system planning and analysis, 
system models, and implementation code together, and supports an iterative 
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development process from planning to models, models to code, and code back to 
analysis and planning. The goal is to enable users to create models rapidly with 
integrated timing requirements, directly generate implementation code and measure 
the performance, and more seamlessly make engineering changes on models and  
re-generate code. 

Our solution with Automax has been implemented as a modeling tool in Eclipse 
using multiple Eclipse Modeling Projects [17], which provides a unified set of 
modeling frameworks, tooling, and standards implementations on the evolution and 
promotion of model-driven development technologies within the Eclipse community. 
Automax provides a schedule planner, robot modeling editor, code generator, and a 
number of tools to facilitate the timing and scheduling design, validation, and 
optimization. The next sections will present the main components of our Automax 
solution. 

3 Using Models to Facilitate Engineering Changes 

The engineering changes in robotics may emerge from the need for a new group of 
robots to collaborate with each other, a new sequence of actions to perform, or a new 
set of configuration parameters for each robot. The main challenge of handling these 
changes comes from locating the correct parts of the source code and making the 
needed changes. To raise the level of abstraction, we analyzed the source code of 
existing robot programs currently in use within an automotive assembly line and 
identified the key concepts and relationships in the robotics domain through a manual 
reverse-engineering process (i.e., identify the functions or statement blocks in the 
source code and extract them as unique and reusable modeling concepts). A DSML 
was defined using these concepts. Figure 2 shows the core part of the metamodel used 
to define the Automax DSML, with the model attributes and some extra data types 
elided. A robotics configuration can include multiple robots. Each robot can perform 
various types of sequential actions, such as moving, welding, opening/closing 
grippers, checking pivot equipment and halting. Corresponding attributes are 
available for direct configuration for each action. The Composite command pattern 
can be used to include a group of actions. Special configurations (e.g., movement 
configuration, tooling configuration) are available for separate definition and shared 
by the action commands. Advanced flow control mechanisms such as repetition and 
decision-making are not defined in the metamodel for the purpose of hiding the low-
level programming details. 

Figure 3 shows an excerpt of a robot model instance. Users can construct a group 
of robots, configure the actions and parameters in the editor, and specify the sequence 
of actions using arrows. Based on this DSML, any engineering changes defined in the 
Digital Master of the product can be implemented by modifying the model instances 
to adopt the changes in the manufacturing process. For example, a group of robots can 
be changed by directly adding or removing robots; the actions for each robot can be 
updated by editing the action command model elements; the attribute editor allows  
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of Figure 6, where the Palette represents the visualized domain concepts available 
from the Automax metamodel definition). From this model, robot code can be 
generated within seconds, from what previously would take several weeks. From our 
experience, this new capability allows the exploration of the design alternatives in a 
way that is very productive (within seconds) and accurate (the maturity of the code 
generators produces code that is always more reliable than human-generated code), 
allowing engineers the flexibility to understand design tradeoffs in a manner that is 
currently not possible due to the time needed for manual adaptation. 

 

 

Fig. 6. The integration of planning and high-level robot control in Automax 

The basic implementation of this tool is based on the Eclipse Modeling 
environment. The metamodel is defined using EMF [13][18] and the editing 
environment is generated using GMF [19]. Building and maintaining a modeling tool 
with GMF is not an easy task, which requires six individual models that are highly 
dependent on each other and all need to be in sync with each other. Instead of creating 
these models manually one by one, we use the Eugenia tool [20], which considerably 
sped up the creation of the graphical DSML editors. The Eugenia tool essentially 
reduces development and maintenance effort down to one model plus some optional, 
separate customization information. 

4 Incorporating Timing Requirements to Optimize Schedules 

The separation of timing and scheduling information from the traditional robot control 
programs in process planning makes it difficult to satisfy and validate timing 
requirements. The traditional robotics development requires a timing plan on paper 
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(or in Excel) and then a program that meets the timing requirements. Traditional 
robotics development may involve many iterations to test the performance of the 
completed programs, validate the timing requirements and make necessary changes. 
Using DSMLs, it is possible to specify multiple views or multiple aspects for a certain 
domain, which enables us to define the timing and scheduling information together 
with the robot configurations in the model to better analyze the timing status. In 
Automax, users begin configuring robots with a schedule plan in a customized editor, 
as shown in Figure 7. In the planner, a sequence of tasks is defined with the 
information about the involved robots, start time, end time, and prerequisite tasks. 
This planner serves as the high-level description about the tasks to be accomplished 
and the desired timing requirements. The scheduling information is part of the DSML 
(i.e., the timing attributes in some of the action command) and thus saved as part of 
the robot model. 

 

 

Fig. 7. The schedule plan editor 

From a complete plan, users can generate an initial model automatically that 
contains all the needed robots and the high-level actions. The actions have been 
ordered correctly based on the prerequisite actions defined in the planner. From this 
initial model, users can fill each high-level action (i.e., the composite action which 
includes a set of atomic actions) with the specific action commands needed. The 
transformation from the schedule model to robot model is an endogenous model 
transformation, which means we start with creating the schedule model elements, and 
then the tool will enrich the model with the robot information. The transformed model 
can always be edited in the schedule planner directly, and the information will always 
be synchronized. The model excerpt shown in Figure 3 has the fully configured action 
commands based on the generated model from the planner. With a complete robot 
model, the total duration of each high-level action can be estimated based on the 
included atomic actions through a computation engine. By comparing the estimated 
time and the planned schedule, users can determine directly if the current action 
configuration can satisfy the timing requirements, as shown in Figure 8. Each blue bar 
in the figure represents a task to finish with its start and end time. The inner green bar 
reflects the estimated duration based on the current actions included. The chart can be 
shown during editing time, so that users can modify the plan or change the actions 
during a schedule violation or optimization. 

Besides the timing analysis, special features have been implemented to optimize the 
schedule in regards to cycle time. For instance, in manufacturing process development,  
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movement is the most typical and frequent action that a robot performs. A sequence of 
movement steps is always needed to reach a desired location. Without an optimized 
sequence, it may cause unnecessary delays. Thus, a feature has been implemented in 
Automax to identify all the movement steps in a robot automatically, and re-order the 
sequence of these steps using a shortest path algorithm. Because the location 
configuration is captured in the model elements, this type of optimization can be done on 
models directly, which we have observed to be easier than realizing the same 
optimization on robot code through parsing and program transformation processes. The 
timing planner editor, analysis viewer, and optimizer are realized as Eclipse plug-ins to 
the Automax environment. Models are the direct artifacts to be operated by the plug-ins, 
and provide a convenient programming and exchange interface. 

 

 

Fig. 8. The chart showing the current timing status 

With the implementation of the timing planner and optimization features, benefits 
can be seen from using models to do robotics development. However, the large 
amount of legacy code has already been used in production, which cannot be directly 
applied in the Automax modeling environment. In order to support the legacy robot 
code, we are further enhancing the tool to enable reverse engineering of the existing 
KUKA robot code. As the first version, a subset of the KUKA grammar has been 
specified in Xtext [21], which considers KUKA as a textual DSL. The grammar is 
also mapped to the Automax metamodel, so that with the generated text editor using 
Xtext, the legacy robot code can be parsed and converted into Automax models 
directly, as shown in Figure 9. From the models, users can perform the typical model 
editing operations, analyze the timing, apply optimizations, and then re-generate a 
new version of the code. Changes can also be made directly to code, which can be 
reverse engineered again and injected back into models. 
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a) Original manually created robot code for a particular welding task 

 

b) Corresponding Automax model representation 

Fig. 9. Converting robot code to an Automax model 

5 Applying Diverse Code Generators to Support Multiple 
Platforms 

The robot model only contains platform-independent information, so it can be used to 
generate code for different implementation platforms (i.e., different robot vendors). 
When designing a code generator, a preferred practice is to design a domain 
framework, which contains common functionality so that a minimum amount of code 
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needs to be generated from the models [8]. Thus, we identified the code framework 
used in several robotics languages (e.g., environment initialization, PLC and tool 
communication working environment clean up), which are fixed and used in many 
robotics tasks. The generated code realizes the specific sequence of actions and the 
configuration of each action. A separation of the generated code from the code 
framework reduces the complexity of code generation specification, which we believe 
leads to a more maintainable architecture. 

6 Related Works 

Angerer et al. introduced an Object-Oriented (OO) framework for modeling industrial 
robotics applications to improve robotics development and maintenance [5]. By 
analyzing the existing low-level and imperative robot programming languages, a set 
of robotics APIs were designed across 70 classes, which covers the concepts to model 
geometric relations (e.g., Frame, SpatialObject, PhysicalObject), device and control 
(e.g., Device, Joint, Manipulator), and commands (e.g., Action, Trigger). These APIs 
can be integrated with the traditional OO programming languages and executed 
through a special library to map the APIs to the original low-level code [6]. The main 
benefit of having an OO robotics framework is that developers can utilize OO design 
and use OO programming languages to improve the robotics development and 
maintenance process. However, when moving the traditional robotics language to an 
OO language, it becomes a general-purpose language (with domain concepts 
summarized as APIs); thus, this solution is not at the same level of abstraction as our 
Automax modeling solution. Furthermore, the timing requirements and multiple 
platform support have not been considered in their approach. 

Robmann et al. presented another robotics development approach from a different 
direction [7]. The context of their approach is the existence of an online (real 
execution) and an offline (simulation) robot system. They designed a new system 
called “ProDemo” to improve the setup (i.e., configuration and programming) of both 
systems. There are two main components in ProDemo: 1) Modeling by demonstration 
provides a new approach to build 3D models for the simulation. Users teach the 
robots about certain behaviors by directly demonstrating the process. 2) A visual 
programming robot control language can be used to program the control flow of 
robots, which enables users to program the robot in a graphical and more intuitive 
way. However, this system only focuses on the control specification of robots, 
without considering the timing and scheduling requirements. Additionally, the visual 
programming language is in fact at the same level of abstraction as the traditional 
textual robot language. It only changes the concrete syntax, without raising the level 
of abstraction by hiding the low-level implementation details. 

There are many usage examples of DSMLs in different domains to improve 
software development. For instance, a similar modeling approach has been applied to 
create a time-triggered system for electrical cars that support different communication 
protocols (e.g., Flexray, CAN bus) [10]. In the area of high-performance computing, 
Jacob et al. designed and implemented a modeling framework called PPmodel to 
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assist programmers in separating the core computation from the details of a specific 
parallel architecture, identifying and retargeting the parallel section of a program to 
execute in a different platform [11]. Another example is the application of model-
driven engineering and a supporting tool infrastructure for the industrial process 
control domain, done by Lukman et al. [12]. The work described in this paper 
distinguishes itself from the following aspects: 1) it focuses on the robotics domain; 
2) non-functional requirements (i.e., timing and scheduling requirements) have been 
integrated with domain concepts and reflected in the generated code; 3) performance 
analysis and optimization can be made to models during editing time; 4) the same 
metamodel is mapped to both the textual and the graphical DSL so that the two 
formats can be interchanged with each other; 5) an iterative development approach 
and reverse engineering are both supported in our framework. 

7 Conclusions and Future Work 

In this paper, we presented the concept of applying DSM to the robotics domain to 
handle the challenges of industrial robotics development. Our solution is based on a 
high-level DSML designed specifically for configuring robots so that users can model 
the robot control using direct domain concepts, and generate code for different 
platforms automatically. The code generation enables users to only change models to 
adapt engineering changes, without manually evolving the implementation. We also 
integrated the timing and scheduling requirements into the modeling language, which 
eases the schedule planning, validates the timing requirements, and optimizes the 
schedule. Our Robmax framework for process optimization system is used in 
automobile factories in Europe and North America. The new Automax modeling suite 
serves as the input to Robmax and has demonstrated improved advantages over 
traditional robot programming in terms of the its ability to facilitate engineering 
changes that crosscut much of the boundaries of the lower level robotics code.  
Figure 10 shows the integration point for Automax and Robmax. 

One of the main research directions in the future is to extend the grammar used in 
the reverse engineering so that it can support the complete integration of legacy code 
from past robot programs. Currently, our solution supports a subset of the KUKA 
robot programming grammar that is related with the data-centric configurations. The 
challenge of supporting the full grammar is how to map every detail of the language 
to the metamodel. Although it is possible to extend the metamodel to fit the complete 
language, it will inevitably lower the level of abstraction and undermine the benefits 
of using DSMLs. Thus, the ideal situation would be to have the capability of parsing 
all the legacy code, but generating a model that conforms to a metamodel that is still 
at a higher-level of abstraction without covering each language detail used in the 
legacy code. On the other hand, the optimization and analysis are currently dependent 
on the metamodel definition and implemented as separate plug-ins. This dependency 
brings about problems with metamodel changes. Therefore, it would be very useful to 
investigate how to integrate the semantics of optimization and analysis into the 
metamodel and then automatically generate these functions based on the metamodel. 
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Fig. 10. Automax interaction with Robmax (a highly successful automation efficiency solution 
already deployed across 3,000 robots in Europe and North America) 
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