
A. Schürr and B. Selic (Eds.): MODELS 2009, LNCS 5795, pp. 712–726, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Model Transformation by Demonstration

Yu Sun1, Jules White2, and Jeff Gray1

1 Dept. of Computer and Information Sciences, University of Alabama at Birmingham
{yusun,gray}@cis.uab.edu

2 Institute for Software Integrated Systems, Vanderbilt University
jules@dre.vanderbilt.edu

Abstract. Model transformations provide a powerful capability to automate
model refinements. However, the use of model transformation languages may
present challenges to those who are unfamiliar with a specific transformation
language. This paper presents an approach called model transformation by
demonstration (MTBD), which allows an end-user to demonstrate the exact
transformation desired by actually editing a source model and demonstrating
the changes that evolve to a target model. An inference engine built into the un-
derlying modeling tool records all editing operations and infers a transformation
pattern, which can be reused in other models. The paper motivates the need for
the approach and discusses the technical contributions of MTBD. A case study
with several sample inferred transformations serves as a concrete example of
the benefits of MTBD.

Keywords: Model transformation, Program inference, Refactoring.

1 Introduction

Model transformation is a core part of Domain-Specific Modeling (DSM) and plays
an indispensible role in many applications of model engineering (e.g., code genera-
tion, model mapping and synchronization, model evolution, and reverse engineering
[1]). The traditional way to implement model transformations is to use executable
model transformation languages to specify the transformation rules and automate the
transformation process [2]. However, the use of model transformation languages may
present some challenges to users, particularly to those who are unfamiliar with a spe-
cific transformation language. Although declarative expressions are supported in most
model transformation languages, the transformation rules are defined at the meta-
model level, which requires a clear and deep understanding about the abstract syntax
and semantic interrelationships between the source and target models. In some cases,
certain domain concepts are hidden in the metamodel and difficult to unveil [3, 4].
These implicit concepts make writing transformation rules challenging. Moreover, a
model transformation language may not be at the proper level of abstraction for an
end-user and could result in a steep learning curve. One advantage of DSM is that by
raising the level of abstraction, domain experts and non-programmers can become
participants in software development. However, the difficulty of specifying meta-
model-level rules and the associated learning curve may prevent domain experts from

 Model Transformation by Demonstration 713

contributing to certain model transformation tasks from which they have much do-
main experience.

Model Transformation By Example (MTBE) is an innovative approach (first intro-
duced in [5]) to address the challenges inherent from using model transformation lan-
guages. Instead of writing transformation rules manually, MTBE enables users to
define a prototypical set of interrelated mappings between the source and target model
instances, and then the metamodel-level transformation rules can be inferred and gen-
erated semi-automatically. In this context, users work directly at the model instance
level and configure the mappings without knowing any details about the metamodel
definition or the hidden concepts. With the semi-automatically generated rules, the
simplicity of specifying model transformations is greatly improved.

The current state of MTBE research still has some limitations that may prevent it
from being a widely used model transformation approach. The semi-automatic gen-
eration often leads to an iterative manual refinement of the generated rules; therefore,
the model transformation designers may not be isolated completely from knowing the
transformation languages and the metamodel definitions. In addition, the inference of
transformation rules depends on the given sets of mapping examples. In order to get a
complete and precise inference result, one or more representative examples must be
available for users to setup the prototypical mappings, but seeding the process with
such examples is not always an easy task in practice. Furthermore, current MTBE
approaches focus on mapping the corresponding domain concepts between two dif-
ferent metamodels without handling complex attribute transformations. For instance,
in practice, it is quite common to transform an attribute in the source model to another
in the target model with some arithmetic or string operations, which is expressed by
imperative transformation rules in some transformation languages. Unfortunately,
these imperative expressions can only be added manually to the generated rules using
current MTBE approaches.

To further simplify the model transformation process, we propose a new approach
– Model Transformation By Demonstration (MTBD). Instead of the MTBE idea of
inferring the rules from a prototypical set of mappings, users are asked to demonstrate
how the model transformation should be done by directly editing (e.g., add, delete,
connect, update) the model instance to simulate the model transformation process step
by step. A recording and inference engine has been developed, as part of a prototype
called MT-Scribe, to capture all user operations and infer a user’s intention in a model
transformation task. A transformation pattern is generated from the inference, specify-
ing the precondition of the transformation and the sequence of operations needed to
realize the transformation. This pattern can be reused by automatically matching the
precondition in a new model instance and replaying the necessary operations to simu-
late the model transformation process.

We have successfully applied this approach to implement endogenous model trans-
formations, where both the source and target models conform to the same metamodel.
Our initial experience in using MTBD suggests improvement in the efficiency and
simplicity of specifying model transformations. The current contributions of MTBD
include the following:

− MTBD represents one of the first attempts to simplify the specification of
endogenous model transformations (in contrast to the exogenous focus of

714 Y. Sun, J. White, and J. Gray

previous MTBE approaches), which offers improvement for automating model
evolution activities (e.g., model refactoring, scaling, and aspect weaving).

− MTBD can be used to specify model transformations without the need to use
a model transformation language. Furthermore, an end-user can describe a
desired transformation task without detailed understanding of a specific
metamodel.

− The current status of MT-Scribe includes: (1) a recording engine to com-
pletely capture all user operations and related context; (2) an algorithm to op-
timize the recorded operations, eliminating meaningless operations; (3) an
algorithm to automatically match a transformation precondition in any model
instance; (4) support to infer transformations with attribute operations; (5) a
correctness checking and undo mechanism to guarantee the correctness of
the transformation process; (6) fully automatic generation of a transformation
pattern, without iterative manual refinement.

The rest of this paper is organized as follows. A motivating example is first given in
Section 2. The paper demonstrates the concept of MTBD through two endogenous
model transformation examples. Section 3 presents the overview and main steps of
our approach, followed by an explanation of the technical implementation and algo-
rithms through a running example in Section 4. An additional example is also given at
the end of Section 4 to further illustrate the idea. Related transformation techniques
are compared in Section 5, and Section 6 offers concluding remarks and summarizes
future work.

2 MazeGame – A Motivating Example

This section introduces an endogenous transformation task in a simple modeling lan-
guage called MazeGame. For the purpose of introducing MTBD, the MazeGame ex-
amples presented in this paper are simple transformation cases in a small domain.
From the metamodel definition in Figure 1, a maze consists of rooms, which can be
connected to each other. Each room can contain gold, a weapon or a monster with the
powerValue attribute to specify the power. This modeling language is used to gen-
erate a textual game in Java, enabling players to type textual commands to move in
the maze and collect all the gold without being killed by monsters. A model instance
describes a specific maze configuration. Collecting weapons during game-play in-
creases a player’s power, which can be used to kill monsters. We constructed this
metamodel in GEMS (Generic Eclipse Modeling System) [6]. A model instance is
shown in Figure 2.

In the context of this domain, a transformation task can be specified as: for those
rooms that contain gold and a weapon (the two unfolded rooms in Figure 2, Room2 and
Room6), the transformation removes one gold piece, replaces the weapon with a mon-
ster, and sets the powerValue of the new monster to be half of the powerValue of
the weapon being replaced. This transformation is used when the maze designer discov-
ers that the number of monsters is far less than that of weapons, making the game too
easy.

 Model Transformation by Demonstration 715

Fig. 1. The MazeGame metamodel

Fig. 2. Part of a MazeGame model instance

Some model transformation languages supporting endogenous transformation (e.g.,
ATL [7] and C-SAW [8]) can be used to complete this task by specifying the trans-
formation rules. However, domain experts, or in this case, maze designers who have
very little knowledge about computer science may find it challenging to learn a trans-
formation language and understand the metamodel definition. To use MTBE, the ap-
propriate source and target models are needed that fit the desired transformation task.
Such examples may not be readily available and may require a large amount of time
to create for large models. Also, the attribute modify operation (e.g., transforming the
powerValue of the weapon) cannot be inferred and generated automatically by ex-
isting MTBE approaches.

3 Overview of MTBD

MTBD is motivated by the difficulties of learning new model transformation lan-
guages and understanding metamodel definitions, and the limitations of MTBE. By
analyzing the recorded user operations, a transformation pattern can be inferred and

716 Y. Sun, J. White, and J. Gray

then reused by automatic pattern matching without the availability of model transfor-
mation language support in a modeling tool. The MTBD process (Figure 3) consists
of five main steps.

Step 1: User demonstration and operations recording. A user-recorded demonstra-
tion provides the base for transformation pattern analysis and inference, so accurately
recording all user operations is the first step. The demonstration is given by directly
editing a model instance (e.g., add a new model element or connection, modify the
attribute of a model element) to simulate a transformation task. An event listener has
been developed as part of MT-Scribe to monitor all the operations occurring in the
model editor. For each operation that is captured, all the information about the opera-
tion is encapsulated into an object, similar to a Command pattern. Finally, the list of
objects represents the sequence of operations needed to finish a transformation task.

Fig. 3. MTBD overview

Step 2: Optimize recorded operations. The sequence of operations recorded directs how
a transformation should be performed. However, not all operations are meaningful. For
instance, without a careful design of the demonstration, it is possible that a user first adds a
new element and modifies its attributes, and then deletes it in another operation; the result
being that all the operations regarding this element actually did not take effect in the trans-
formation process and therefore are meaningless. The presence of meaningless operations
not only has the potential to make the inferred transformation preconditions inaccurate, but
also exerts a negative influence on the efficiency of a transformation, especially when it
executes on a large model instance. Thus, an optimization that eliminates all meaningless
operations is automatically done after the recording.

Step 3: Infer the transformation pattern. Because our approach does not rely on a
model transformation language, it is not necessary to generate specific transformation
rules; instead, a general transformation pattern is inferred. This pattern describes the
precondition of a transformation (i.e., where the transformation should be performed)
and the actions of a transformation (i.e., how the transformation should be realized).
By analyzing the recorded operations, the related meta-information of model elements
and connections is extracted to construct the precondition, while the actions are speci-
fied by the operation sequence.

 Model Transformation by Demonstration 717

Step 4: Precondition matching. After a pattern is summarized, it can be reused and
applied to any model instance from the same metamodel. By selecting a pattern from
the repository, the MT-Scribe engine automatically traverses the model instance to
search all locations that match the selected pattern. A notification is given if no
matching locations are found. In MTBD, a matching location contains the necessary
model elements and connections on which the recorded operations could be executed
correctly.

Step 5: Replay operations and correctness checking. When a matching location is
found, the recorded operations are replayed to transform the current model instance.
The pattern matching step guarantees that operations can be executed with necessary
operands. However, it does not ensure that executing them will not violate the meta-
model. Therefore, each applied operation is logged and model instance correctness
checking is performed after every operation execution. If a certain operation violates
the metamodel definition, all executed operations are undone and the whole transfor-
mation replay is cancelled.

4 Technical Implementation and Algorithms Supporting MTBD

An Eclipse plug-in has been implemented in GEMS to realize the MTBD approach.
To illustrate the usage and implementation of each step from Section 3, the process of
inferring a user-demonstrated transformation is presented using the motivating exam-
ple. A second MazeGame transformation is introduced to illustrate the idea further.

4.1 Demonstration of MTBD Using the MazeGame

GEMS provides an extension point to capture all events that occur during user interac-
tion on a model instance. To infer a transformation pattern, the model editing operations
performed by the user must be recorded. In GEMS, user operations can be classified
into six categories. By filtering out unrelated events, all operations are recorded in se-
quence and stored as operation objects, with the necessary information encapsulated as
listed in Table 1. The final list of operation objects serves as the fundamental knowledge
base for the pattern inference and summary in later steps.

Table 1. Six types of recorded user operations

Operation Type Information Recorded
Add an Element Location of the parent element and its meta type

The newly added element and its meta type
Remove an Element Location of the element being removed and its meta type
Modify an Element Location of the element being modified and its meta type

The attribute name, the old value and the new value
Add a Connection Location of the parent source and target elements and their meta types

The newly added connection and its meta type
Remove a Connection Location of the connection being modified and its meta type
Modify a Connection Location of the connection being modified and its meta type

The attribute name, the old value and the new value

718 Y. Sun, J. White, and J. Gray

To demonstrate the transformation in the motivating example from Section 2, a user
must first find a room that contains a gold piece and a weapon. The four operations listed
in Table 2 are performed during the user demonstration. The whole model changing
process is shown in Figure 4. The remove and add operations in the first three steps are
realized by the basic editing actions in the editor, and the fourth operation to modify the
attribute is implemented by choosing the attribute from the attribute tree and specifying
the arithmetic expression. When the powerValue of weapon1 is chosen, its value
(80) is displayed. A user may type “ / 2” in the expression editor to identify the way that
a numeric attribute is changed by a transformation. By clicking the evaluate button in the
recording dialog, the final value for the attribute (40) is calculated and assigned to the
current attribute being edited. As a result, the recording has defined this attribute opera-
tion as “monster1.powerValue = weapon1.powerValue / 2”. In this way,
constant values and formulas are typed directly, while referenced attributes are selected
from the attribute tree. Attribute computation is therefore enabled in the user demonstra-
tion process using a real model instance, rather than at the metamodel level. This is cur-
rently impossible in most MTBE implementations.

Table 2. The sequence of operations demonstrated to realize motivating example

No. Operation Information Recorded
1 Remove Gold1 Location: Root1.MazeFolder1.Room2.Gold1

Meta type: Root.MazeFoler.Room.Gold
2 Remove Weapon1 Location: Root1.MazeFolder1.Room2.Weapon1

Meta type: Root.MazeFoler.Room.Weapon
3 Add a Monster Location: Root1.MazeFolder1.Room2

Meta type: Root.MazeFoler.Room
New element: Monster1 Meta Type: Monster

4 Modify Monster1 Location: Root1.MazeFolder1.Room2.Monster1
Meta type: Root.MazeFolder.Room.Monster
Attribute: powerValue Old value: 0 New value: Weapon1 / 2

Fig. 4. Model changing process

 Model Transformation by Demonstration 719

Algorithm 1. Optimize Operation List

 for each op in the input operation list
 switch (op.type)
 case ADD_ELEM:
 for each op_temp after the current op in the list
 if op_temp.type == REMOVE_ELEM and op_temp removes what op added
 then remove both op and op_temp from the list
 end for
 case MODIFY_ELEM:
 traverse the final model instance and search the element being modified
 if not found then remove op from the list
 if found then compare the attribute value with the value stored in op
 if different then remove op from the list
 case ADD_CONN:
 for each op_temp after the current op in the list
 if op_temp.type == REMOVE_CONN and op_temp removes what op added
 then remove both op and op_temp from the list
 end for
 case MODIFY_CONN:
 traverse the final model instance and search the connection being modified
 if not found then remove op from opList
 if found then compare its attribute value with the value stored in op
 if different then remove op from opList
 end for

Given the final list of recorded operations and the final model instance after user

demonstration, an optimization phase that removes meaningless operations is per-
formed by analyzing each operation in the list of recorded operations. The optimiza-
tion algorithm is given in Algorithm 1. Based on the optimized operation list, the
transformation pattern is inferred. Because no transformation language is used in the
inference, the result is called a transformation pattern rather than a transformation rule
(Please note: we can also generate concrete transformation rules from the inferred
pattern). A transformation pattern consists of a precondition and the transformation
actions.

Table 3. Model object list in precondition

elem1.elem2.elem3.elem4
elem1.elem2.elem3.elem5
elem1.elem2.elem3 (elem6)
elem1.elem2.elem3.elem6

Table 4. Model objects type table

Model Object Meta Type
elem1 Root
elem2 MazeFolder
elem3 Room
elem4 Gold
elem5 Weapon
elem6 Monster

Table 3 and Table 4 together specify the precondition of the example inferred from

the operation list, i.e., all the rooms that contain a gold piece and a weapon. The infer-
ence is accomplished by extracting the meta information of the recorded operations
and generalizing them. In Table 3, elem6 in parenthesis denotes a newly added

720 Y. Sun, J. White, and J. Gray

element. Instead of the specific IDs in the recorded operations, generic names with a
meta type mapping table are used to describe the precondition. This precondition
guarantees that the operations could be executed correctly with sufficient operands.
To implement more powerful transformations, more complex preconditions need to
be enabled, which are mentioned in Section 6. Table 5 gives the actions as recorded
operations with generic element names. The summarized transformation pattern is
serialized and stored in a pattern repository.

Table 5. Transformation actions with generic element names

Remove elem4 from elem3
Remove elem5 from elem3
Add elem6 in elem3
Modify elem6: elem6.powerValue = elem5.powerValue / 2

To apply a reusable transformation to a model instance, a pattern is selected from

the repository and applied to a portion of the model instance. The MTBD plug-in will
traverse the model instance and find all locations that match the precondition in the
pattern. The backtracking algorithm (Algorithm 2) is used in the matching process. To
enable more flexible matching in the model instance, two matching modes are sup-
ported. The default mode traverses the whole model instance to search all locations
that match the precondition. A customized mode assists users in selecting parts of the
model instance to traverse. In either mode, the MTBD plug-in reports if no locations
are matched on a specific model instance.

After a precondition is matched to a location in the model instance, the transforma-
tion operations will be replayed automatically in sequence to realize the transforma-
tion process. Because an operation is implemented by low-level APIs provided by
GEMS, an operation might be executed without consideration by the model correct-
ness checking mechanism in the model editor. The possible result is a metamodel
violation (e.g., if an operation is to add a monster in a room, it can still be replayed in
a room even if a monster already exists, but at most one monster is allowed to be in a
room according to the metamodel). To ensure a correct transformation, the model
correctness checking is done after replaying each operation by calling the GEMS
model checking module. Each replay is also logged in a stack, so that if a violation
occurs, the replayed operations can be undone and rolled back to restore the original
model instance.

Algorithm 2. Precondition Matching
initialize a candidate object list of all the elements and connections in the selected model instance
for each entry e in the model object list

for each obj in the candidate object list
 if obj matches e then assign obj to e and break
 if obj does not match e then continue
end for
if e is assigned and is the last entry in the list then matching succeeds
if e has not been assign then backtrack the previous e and try again
if no further backtracking is allowed then matching fails

end for

 Model Transformation by Demonstration 721

Fig. 5. Part of the model instance after the transformation

Figure 5 shows part of the model instance after applying the transformation pattern
example in a MazeGame model instance. The gold piece is removed and the weapon
is replaced with a monster whose powerValue is half as before. The whole process
with more detailed information can be viewed as a video on the project website [22].

4.2 Another Transformation Example: Balancing Game Play

A perfect maze game has a balance of power between monsters and weapons, so win-
ning a game should be neither too easy nor too hard. To make the motivating example
more difficult to play, a weapon is replaced with a monster if it is in a room together
with a gold piece, so that getting a piece of gold first requires killing a monster. In
some other cases, the game may accidentally become too difficult. For example,
sometimes monsters appear in a sequence of rooms and the consequence is that a
player will encounter several monsters in a row. Figure 6 (left) shows a part of a maze
where three rooms connected with each other all contain a monster. To balance the
power, it is necessary to replace the monster in the third room with a weapon, and the
powerValue of the weapon defined as the sum of the monsters in the first two
rooms. In addition, to avoid encountering three monsters in a row, it is necessary to
reconnect the rooms so that the first monster room connects to the third weapon room,
which then connects to the second monster room, as shown in Figure 6 (right). Table
6 indicates the operations needed for this transformation.

Fig. 6. Avoid encountering three monsters in a row

722 Y. Sun, J. White, and J. Gray

Table 6. The sequence of operations demonstrated to avoid three monsters in a row

No. Operation
1 Remove Monster1 in Room 9
2 Add a new Weapon in Room 9
3 Set the powerValue of the new weapon to be the sum of two monsters

in Room1 and Room2
4 Remove the connection from Room1 to Room2
5 Remove the connection from Room2 to Room9
6 Add a connection from Room1 to Room9
7 Add a connection from Room9 to Room2

The final generated transformation precondition is shown in Tables 7 and 8, repre-
senting all three rooms connected one-by-one with each containing a monster. The
stored transformation actions are listed in Table 9. Even though this is a very simple
case study, the transformation of powerValue in this example transformation can-
not be accomplished by MTBE, which mainly focuses on direct concept mappings.
Our MTBD approach provides an opportunity to define a computation used within a
transformation.

Table 7. Model object list in precondition

elem1.elem2.elem3.elem4
elem1.elem2.elem3 (elem5)
elem1.elem2.elem6.elem8
elem1.elem2.elem7.elem9
elem1.elem2.conn1:elem6->elem7
elem1.elem2.conn2:elem7->elem3
elem1.elem2(conn3:elem6->elem3)
elem1.elem2(conn4:elem3->elem7)

Table 8. Model objects type table

Model Object Meta Type
elem1 Root
elem2 MazeFolder
elem3 Room
elem4 Monster
elem5 Weapon
elem6 Room
elem7 Room
elem8 Monster
elem9 Monster
conn1 RoomConnection
conn2 RoomConnection
conn3 RoomConnection
conn4 RoomConnection

Table 9. Transformation actions with generic element names

Remove elem4 from elem3
Add elem5 in elem3
Modify elem5: elem5.powerValue = elem8.powerValue + elem9.powerValue
Remove conn1
Remove conn2
Add conn3 from elem6 to elem3
Add conn4 from elem3 to elem7

 Model Transformation by Demonstration 723

5 Related Work in Model Transformation Inference

MTBD aims to simplify implementation of model transformation tasks, following the
similar direction of MTBE approaches. Balogh and Varró introduced MTBE by using
inductive logic programming [9, 10]. The idea is to generate graph transformation
rules from a set of user-defined mappings between the source and target model in-
stances by applying an inductive logic engine. Similarly, Strommer and Wimmer im-
plemented an Eclipse prototype to enable generation of ATL rules from the semantic
mappings between domain models [11, 12]. Both approaches provide semi-automatic
generation of model transformation rules, which need further refinement by a user.
Because both approaches are based on semantic mappings, they are more appropriate
in the context of exogenous model transformations between two different metamod-
els. However, the generation of rules to transform attributes is not well supported in
most MTBE implementations.

MTBD and MTBE are actually extensions of the “by-example” concept. Query-by-
example [13] provides a graphical query interface to enable users to use visual tables
to specify example query elements and conditions. A similar idea to our approach is
called programming-by-example [14, 15], which is used to infer new behaviors by
demonstrating the actions on concrete examples. In addition, the “by-example” idea
has also been applied to XML document transformation [16]. XML schema trans-
formers can be derived from examples, which then generate XSLT code to transform
XML documents.

Although our contribution focuses on model transformations, a similar work has
been done to carry out program transformations by demonstration [17]. To perform a
program transformation, users first manually change a concrete program example, and
all the changes will be recorded by the monitoring plug-in. Then, the recorded
changes will be generalized in a transformation. After editing and specifying the gen-
erated transformation, it can be applied to other source code locations. Although it
also supports the specification of how variable values are computed, it is in a separate
step with much manual editing involved. MTBD automates this step in the demonstra-
tion process and is focused on demonstrating changes on model instances, not source
code.

6 Conclusion and Future Work

This paper introduces a new approach to simplify model transformation tasks, which
does not rely on any model transformation language or the understanding of a specific
metamodel. To avoid iterative user refinements after the generation process, we made
the process fully automated by enabling users to demonstrate not only the transforma-
tion precondition, but also the transformation actions, including attribute computa-
tions. The generated transformation patterns are stored in a repository, which can be
applied to any model instance in the same metamodel from which the transformation
was recorded. A complete Eclipse plug-in for GEMS, called MT-Scribe, has been
developed to implement the MTDB approach. The examples presented in this paper

724 Y. Sun, J. White, and J. Gray

are simple transformation cases in a small domain, which are used to focus on the
MTBD approach. The examples also illustrate the type of challenges that are encoun-
tered when using the direct mapping approach of most MTBE implementations. The
current implementation can also carry out other complex transformations in practical
domains, such as UML refactoring. More details and examples about MTBD, includ-
ing video demonstrations, are available at [22]. The MTBD idea can be applied to
improve many model evolution tasks, such as:

− Model refactoring. Like program refactoring, model refactoring improves the

internal structure of a system model without changing its external behavior. The
traditional approach is to use a model transformation engine with a refactoring
language [18]. The current version of MTBD can be used to support model refac-
toring. MTBD allows end-users to build a set of reusable refactorings that are do-
main-specific.

− Aspect-Oriented Modeling (AOM). AOM addresses crosscutting concerns in
models by separating each concern and weaving it within a base model. Aspects
can be defined by using either a textual constraint language [19] or graphical
modeling language [20]. MTBD can also be applied to automate AOM, with pre-
conditions representing pointcuts and the transformation actions corresponding to
advice.

− Model scalability. A model transformation engine can be used to scale model
instances, such as the replicators implemented in [21]. Instead of specifying scal-
ing rules, users can demonstrate the scaling process by using MTBD.

We believe that MTBD can also be used in exogenous model transformations. In a
modeling environment where editing two model instances from two different domains
are allowed, users can edit the source model and change it to the desirable target
model. Then the transformation pattern or rules could be inferred from the editing
operations, which is our future main focus.

In the current version of MT-Scribe, one limitation is that only the basic or the
weakest precondition can be inferred. For instance, in the motivating example, the
precondition is all the rooms that contain at least one gold piece and one weapon.
However, it is impossible to further restrict it to only the rooms with more than two
connections and the powerValue of the contained weapon is more than 100. This
inflexibility of specifying preconditions exerts a negative influence on the power of
MTBD. To enable more powerful precondition definitions, we will implement one
more step to ask users to demonstrate the precondition as well. Users will be asked to
select the model objects in the editor and setup the conditions that need to be satisfied.

Furthermore, the attribute operations currently supported are only basic arithmetic
operations and string concatenation. However, more powerful operations and func-
tions (e.g., max() and min()) are available in some model transformation lan-
guages. Hence, to make MTBD more practical, these additional attribute operations
should be supported in the demonstration process.

Acknowledgement. This work was supported by NSF CAREER award CCF-0643725.

 Model Transformation by Demonstration 725

References

1. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–645 (2006)

2. Sendall, S., Kozaczynski, W.: Model transformation - The heart and soul of model-driven
software development. IEEE Software, Special Issue on Model Driven Software Devel-
opment 20(5), 42–45 (2003)

3. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation gen-
eration by-example. In: Proceedings of the 40th Hawaii International Conference on Sys-
tems Science, Big Island, HI, January 2007, p. 285 (2007)

4. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W.,
Schwinger, W., Wimmer, M.: Lifting metamodels to ontologies - a step to the semantic in-
tegration of modeling languages. In: Proceedings of International Conference on Model
Driven Engineering Languages and Systems, Genova, Italy, October 2006, pp. 528–542
(2006)

5. Varró, D.: Model transformation by example. In: Proceedings of Model Driven Engineer-
ing Languages and Systems, Genova, Italy, October 2006, pp. 410–424 (2006)

6. Generic Eclipse Modeling System (GEMS),
http://www.eclipse.org/gmt/gems/

7. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming 72(1/2), 31–39 (2008)

8. Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engineering.
IEEE Computer, Special Issue on Model-Driven Engineering 39(2), 51–58 (2006)

9. Balogh, Z., Varró, D.: Model transformation by example using inductive logic program-
ming. In: Software and Systems Modeling. Springer, Heidelberg (2009)

10. Varró, D., Balogh, Z.: Automating model transformation by example using inductive logic
programming. In: Proceedings of the 2007 ACM Symposium on Applied Computing,
Seoul, Korea, March 2007, pp. 978–984 (2007)

11. Strommer, M., Wimmer, M.: A framework for model transformation by-example: Con-
cepts and tool support. In: Proceedings of the 46th International Conference on Technol-
ogy of Object-Oriented Languages and Systems, Zurich, Switzerland, July 2008, pp. 372–
391 (2008)

12. Strommer, M., Murzek, M., Wimmer, M.: Applying model transformation by-example on
business process modeling languages. In: Proceedings of Third International Workshop on
Foundations and Practices of UML, Auckland, New Zealand, November 2007, pp. 116–
125 (2007)

13. Zloof, M.: Query-By-Example: The invocation and definition of tables and terms. In: Pro-
ceedings of International Conference on Very Large Data Bases, Framingham, Massachu-
setts, 1975, pp. 1–24 (1975)

14. Cypher, A. (ed.): Watch what I do: Programming by demonstration. MIT Press, Cam-
bridge (1993)

15. Lieberman, H.: Special issue on Programming by example. Communication of
ACM 43(3), 72–114 (2000)

16. Lechner, S., Schrefl, M.: Defining web schema transformers by example. In: Mařík, V.,
Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 46–56.
Springer, Heidelberg (2003)

17. Robbes, R., Lanza, M.: Example-based program transformation. In: Proceedings of the
11th International Conference on Model Driven Engineering Languages and Systems,
Toulouse, France, October 2008, pp. 174–188 (2008)

726 Y. Sun, J. White, and J. Gray

18. Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using a model
transformation engine. In: Model-driven Software Development, ch. 9, pp. 199–218.
Springer, Heidelberg (2005)

19. Zhang, J., Cottenier, T., Berg, A., Gray, J.: Aspect composition in the Motorola aspect-
oriented modeling weaver. Journal of Object Technology, Special Issue on Aspect-
Oriented Modeling 6(7), 89–108 (2007)

20. Balasubramanian, K., Gokhale, A., Lin, Y., Zhang, J., Gray, J.: Weaving deployment as-
pects into domain-specific models. International Journal on Software Engineering and
Knowledge Engineering, Special Issue on Aspect-Oriented Modeling 16(3), 403–424
(2006)

21. Gray, J., Lin, Y., Zhang, J., Nordstrom, S., Gokhale, A., Neema, S., Gokhale, S.: Replica-
tors: Transformations to address model scalability. In: Proceedings of Model Driven Engi-
neering Languages and Systems, Montego Bay, Jamaica, October 2005, pp. 295–308
(2005)

22. MTBD Project Page, http://www.cis.uab.edu/softcom/mtbd

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

