

P. Van Gorp, T. Ritter, and L.M. Rose (Eds.): ECMFA 2013, LNCS 7949, pp. 86–100, 2013.
© Springer-Verlag Berlin Heidelberg 2013

End-User Support for Debugging Demonstration-Based
Model Transformation Execution

Yu Sun1 and Jeff Gray2

1 University of Alabama at Birmingham, Birmingham AL 35294
yusun@cis.uab.edu

2 University of Alabama, Tuscaloosa, AL 35401
gray@cs.ua.edu

Abstract. Model Transformation By Demonstration (MTBD) has been
developed as an approach that supports model transformation by end-users and
domain experts. MTBD infers and generates executable transformation patterns
from user demonstrations and refinement from a higher level of abstraction than
traditional model transformation languages. However, not every transformation
pattern is demonstrated and specified correctly. Similar to writing programs,
bugs can also occur during a user demonstration and refinement process, which
may transform models into undesired states if left unresolved. This paper
presents MTBD Debugger, which is a model transformation debugger based on
the MTBD execution engine, enabling users to step through the transformation
execution process and track the model’s state during a transformation. Sharing
the same goal of MTBD, the MTBD Debugger also focuses on end-user
participation, so the low-level execution information is hidden during the
debugging process.

Keywords: Model Transformation By Demonstration (MTBD), Model
Transformation Debug, End-User Programming.

1 Introduction

Model transformation plays an essential role in many applications of Model-Driven
Engineering (MDE) [2]. Although a number of model transformation languages
(MTLs) have been developed to support various types of model transformation tasks
[1], some innovative model transformation approaches and tools have also been
introduced to address the complexity of learning and using MTLs, and the challenges
of understanding metamodels [16]. Our earlier work on Model Transformation By
Demonstration (MTBD) [5], which was influenced by the idea of Model
Transformation By Example (MTBE) [3][4][7], enables users to demonstrate how a
model transformation should be performed by editing the model instance directly to
simulate the model transformation process step-by-step. A recording and inference
engine has been developed to capture all user operations and infer a user’s intention in
a model transformation task. A transformation pattern is generated from the inference,
specifying the precondition of the transformation and the sequence of operations

End-User Support for Debugging Demonstration-Based Model Transformation Execution 87

needed to realize the transformation. This pattern can be further refined by users and
then executed by automatically matching the precondition in a new model instance
and replaying the necessary operations to simulate the model transformation process.
This was the focus of our earlier MODELS paper [5].

Using MTBD, users are enabled to specify model transformations without the need
to use a MTL. Furthermore, an end-user can describe a desired transformation task
without detailed understanding of a specific metamodel. We have applied MTBD to
ease the specification of different model transformation activities – model refactoring,
model scalability, aspect-oriented modeling, model management and model layout
[17][18].

Although the main goal of MTBD is to avoid the steep learning curve and make it
end-user centric, there is not a mechanism to check or verify the correctness of the
generated transformation patterns. In other words, the correctness of the final
transformation pattern totally depends on the demonstration and refinement
operations given by the user, and it is impossible to check automatically whether the
transformation pattern accurately reflects the user’s intention. In practice, this is
similar to producing bugs when writing programs. It is also possible that errors will be
introduced in the transformation patterns due to the incorrect operations in the
demonstration or user refinement step when using MTBD. Incorrect patterns can lead
to errors and transform the model into undesired states. For instance, users may
perform a demonstration by editing an attribute using the value of a wrong model
element; they may give preconditions that are either too restrictive or too weak; or
they may forget to mark certain operations as generic (which forces the inferred
transformation to be tied to a specific binding).

Obviously, an incorrect transformation pattern can cause the model to be
transformed into an incorrect and undesired state or configuration, which may be
observed and caught by users. However, knowing the existence of errors and bugs
cannot guarantee the correct identification and their location, because MTBD hides all
the low-level and metamodel information from users. Also, the final generated pattern
is invisible to the end-users, which makes it challenging to map the errors in the target
model to the errors in the demonstration or refinement step. This issue becomes even
more apparent when reusing an existing transformation pattern generated by a
different user, such that the current users who did not create the original pattern have
no idea how to locate the source of an error.

In order to enable users to track and ascertain errors in transformation patterns
when using MTBD, a transformation pattern execution debugger is needed that can
work together with the pattern execution engine. In fact, a number of model
transformation debuggers have already been developed for different MTLs [9].
However, the main problem with these debuggers is that they work by tracking the
MTL rules or codes, which is at the same level of abstraction as the MTL and
therefore not appropriate for some types of end-users and domain experts. Because
MTBD has already raised the level of abstraction above the general level of MTLs,
the associated MTBD Debugger should be built at the same level of abstraction. Thus,
the goal of the MTBD Debugger presented in this paper is to provide users with the

88 Y. Sun and J. Gray

necessary debugging functionality without exposing them to low-level execution
details or metamodels.

A brief overview of MTBD will be given in Section 2, followed by an introduction
to the MTBD Debugger in Section 3. Section 4 illustrates the usage of the MTBD
Debugger for different debugging purposes through several examples. Section 5
summarizes the related work and Section 6 offers concluding remarks.

2 Overview of MTBD

Figure 1 (adapted from [6]) shows the high-level overview of MTBD, which is a
complete model transformation framework that allows users to specify a model
transformation, as well as to execute the generated transformation pattern in any
desired model instances.

The specification of a model transformation using MTBD starts with a
demonstration by locating one of the correct places in the model where a
transformation is to be made, and directly editing a model instance (e.g., add a new
model element or connection, modify the attribute of a model element) to simulate the
maintenance task (User Demonstration). During the demonstration, users are
expected to perform operations not only on model elements and connections, but also
on their attributes, so that the attribute composition can be supported. At the same
time, an event listener has been developed to monitor all the operations occurring in
the model editor and collect the information for each operation in sequence
(Operation Recording). The list of recorded operations indicates how a non-functional
property should be composed in the base model. After the demonstration, the engine
optimizes the recorded operations to eliminate any duplicated or meaningless actions
(Operation Optimization). With an optimized list of recorded operations, the
transformation can be inferred by generalizing the behavior in the demonstration
(Pattern Inference). Because the MTBD approach does not rely on any MTLs, we
generate a transformation pattern, which summarizes the precondition of a
transformation (i.e., where to perform a transformation) and the actions needed in a
transformation (i.e., how to perform a transformation in this location). Users may also
refine the generated transformation pattern by providing more feedback for the
precondition of the desired transformation scenario from two perspectives – structure
and attributes, or identifying generic operations to be executed repeatedly according
to the available model elements and connections.

After the user refinement, the transformation pattern will be finalized and stored in
the pattern repository for future use (Pattern Repository). The final patterns in the
repository can be executed on any model instances. Because a pattern consists of the
precondition and the transformation actions, the execution starts with matching the
precondition in the new model instance and then carrying out the transformation
actions on the matched locations of the model (Pattern Execution). The MTBD
engine also validates the correctness of the models after each execution process
(Correctness Checking). Users can choose where to execute the pattern, a sequence of
patterns to execute, and the execution times (Execution Control). More details about
MTBD beyond this summary are in [5].

End-User Support for Debugging Demonstration-Based Model Transformation Execution 89

Fig. 1. High-level overview of MTBD (adapted from [6])

3 MTBD Debugger

MTBD Debugger is designed and implemented over the MTBD execution engine.
The specific debugging sequence is based on the structure of a transformation pattern.
As mentioned in Section 2, a transformation pattern contains the precondition of a
transformation (i.e., including the structural precondition and attribute precondition)
and the sequence of transformation actions. During the execution of a transformation
pattern, any error that is discovered can be traced back to errors in either the
precondition or the transformation actions. From the technical perspective as shown
in Figure 2, the goal of MTBD Debugger is to help users correctly map the effect of a
transformation exerted on the target model instance to the precondition and actions
specified in the transformation pattern, so that users can track the cause of an
undesired transformation result.

MTBD Pattern Execution Engine

Transformation Pattern

Source Model

MTBD Debugger

Pattern Matching View

Pattern Execution View

Target Model

Fig. 2. Overview of MTBD Debugger

The main functionality of the MTBD Debugger is supported by enabling the step
through execution of a transformation pattern and displaying the related information
with each step in two views – Pattern Execution View and Pattern Matching View.
Users can directly observe what action is about to be executed, what are the matched

90 Y. Sun and J. Gray

model elements for the operation, and more importantly, how the matched elements
are determined based on the types of preconditions. This allows the end-users to
follow each step and check if it is the desired execution process. In addition, keeping
the debugging process at the proper level of abstraction is an essential design decision
of MTBD Debugger to assist end-users who are not computer scientists. Similar to
MTBD, the MTBD Debugger separates users from knowing any MTLs and hides the
low-level execution or metamodel details, so that the same group of users who
implement model transformations using MTBD are enabled to debug the same model
transformations using the language that represents their domain.

3.1 Pattern Execution View

The Pattern Execution View lists all the actions to be executed in a transformation
pattern in sequence. As shown in a future example in Figure 5 (which is used later in
a specific debugging context), the view displays the type of the action, the main target
element used for this action, whether the action is generic or not, and the related
details based on the type of the action. In the debugging mode, users can step through
each action one-by-one. Before the execution of the action, all the matched elements
that will be used for the action are highlighted in the Pattern Matching View, so that
users can determine which elements will be used for the execution of the action. If the
required target element cannot be matched, “null” will be displayed. After the action
is executed, the Pattern Execution View highlights the next action. At the same time,
the model in the editor is updated with the execution of the previous action. Users can
check the properties and structure of the latest model instance and determine if it is
transformed into the desired state.

3.2 Pattern Matching View

The Pattern Matching View works together with the Pattern Execution View to
provide relevant information about the matched model elements. From Figure 5, it
can be seen that it shows the model element type, the precondition associated with it,
and the specific model element that is matched in the current model. The list includes
all the model elements needed in the transformation pattern. The execution of each
action will trigger the highlight of all needed model elements in this view.

4 MTBD Debugger in Action

This section presents a case study that illustrates the use of MTBD Debugger to
support tracking and debugging errors in several practical model transformation tasks
in a textual game application domain (for the Debugger, we use the same case study
from [5] for consistent discussion for those who may refer back to the original MTBD
paper).

End-User Support for Debugging Demonstration-Based Model Transformation Execution 91

4.1 Background: MazeGame Case Study

The case study is based on a simple modeling language called MazeGame. A model
instance is shown in Figure 3. A Maze consists of Rooms, which can be connected to
each other. Each Room can contain either pieces of Gold, or a power item such as
Weapon or Monster with an attribute (strength) to indicate the power. The goal of the
game is to let players move in the rooms, collect all pieces of gold, and use weapons
to kill monsters. The full Java implementation of the game can be generated
automatically from the game configuration specified in the model. We constructed
this modeling environment in the GEMS [8] Eclipse modeling tool.

Fig. 3. An excerpt of a MazeGame model instance

Building various game configurations using the MazeGame modeling language
often involves performing different model transformation tasks for maintenance
purposes. For instance, if there are rooms that contain both gold and a weapon (the
two unfolded rooms in Figure 3, Room2 and Room6), we can implement a model
transformation to remove the gold, and replace the weapon with a monster, with the
strength of the new monster set to half of the strength of the replaced weapon. Game
designers can apply this transformation when they discover that the number of
monsters is far less than that of weapons, making the game too easy (we presented
this scenario in [5], but used here for explanation of the MTDB Debugger).

4.2 Debugging in Action

In order to illustrate the usage of MTBD Debugger, we consider transformation errors
that end-users may make in this case study when using MTBD, and show how MTBD
Debugger can track and locate these errors.

Debugging Example 1. This first example is based on the following transformation
task: if a Monster is contained in a Room, whose strength is greater than 100, replace
this Monster with a Weapon having the same strength, and add a Gold piece in the
same Room. Figure 4 shows a concrete example for this transformation task.

92 Y. Sun and J. Gray

Monster1.stength = 120 Weapon1.strength = 120

Fig. 4. The excerpt of a MazeGame model before and after replacing the monster

Based on this scenario, a user starts the demonstration by first locating a Room
with a Monster in it, and deleting the Monster, followed by adding a Weapon plus a
Gold piece. The strength of the new Weapon can be configured using the attribute
refactoring editor. Finally, a precondition on Monster is needed to restrict the
transformation (Monster1.strength > 100). As shown in List 1, the user performed all
the correct operations except the incorrect precondition was provided
(Monster1.strength > 10).

List 1 – Operations for demonstrating replacement of a Monster

Sequence Operation Performed
1 Remove Monster1 in Root.TextGameFolder.Room2
2 Add a Weapon in Root.TextGameFolder.Room2
3 Add a Gold in Root.TextGameFolder.Room2
4 Set Root.TextGameFolder.Room2.Weapon.strength

 = Monster1.strength = 120
5 Set precondition on Monster1: Monster1.strength > 10

When applying this generated pattern to the model, it may be found that the

transformation takes place in every Room with a Monster in it even the strength of the
Monster is less than 100, which is not the desired result. Obviously, if the strength of
every Monster is greater than 10, the incorrect precondition can be satisfied with all
Monsters in the model instance. To debug the error, we execute the transformation
pattern again using MTBD Debugger. As shown in Figure 5, the Pattern Execution
view lists all the operations to be performed, while the Pattern Matching view
provides the currently matched elements for the transformation pattern. Users can step
through each of the operations, and the corresponding model elements needed for
each operation will be highlighted. For instance, the very first operation in this
scenario is to remove the Monster in the Room. Before executing this operation and
stepping to the next one, we can determine which Monster is currently matched as the
target to be removed. In this case, the Monster1 in Room12 is about to be removed. If
we check the strength attribute of Monster1 (e.g., 30), we can observe that there is
something wrong with the precondition we specified in the demonstration, because
the strength of this Monster is not greater than 100. At this point, we can focus on the

End-User Support for Debugging Demonstration-Based Model Transformation Execution 93

precondition in the Pattern Matching view, which shows the actual precondition is
“Strength > 10”, not “Strength > 100” as desired (the highlighted red box is added to
the screenshot to draw attention to the location of the error for readers; this does not
appear in the actual tool). The bug is therefore identified and located.

Fig. 5. Debugging the transformation pattern of Example 1

The error in the first example comes from a mistakenly specified precondition that
over-matched the model elements. In the second example, we present how to debug a
transformation pattern that contains preconditions that are under-matched.

Debugging Example 2. The second example is based on the same transformation
scenario as the first one to replace the Monster with a Weapon. However, in this second
demonstration, instead of giving the correct precondition “Strength > 100”, the user
specified “Strength > 1000” by mistake. As we can imagine, the result of executing this
transformation pattern will probably not replace any of the Monsters in the model
instance, because there are seldom Monsters whose strength is greater than 1000.

Similar to the first example, when using the MTBD Debugger to step through the
execution process, we can find out the currently matched model elements for each
operation. As shown in Figure 6, the first operation to remove the Monster contains a
null operation element as the target, which means that there is not a Monster in the
current model instance that can be matched as an operand for this operation. We may
think that there is again something wrong with the precondition, so we take a look at
the precondition in the Pattern Matching view, and find the precondition set
incorrectly as “Strength > 1000”.

94 Y. Sun and J. Gray

Fig. 6. Debugging the transformation pattern of Example 2

Debugging Example 3. Using MTBD, one of the scenarios that may cause an error is
the refinement on the transformation actions in order to identify generic repeatable
operations. The third example is based on the scenario that we want to remove all the
pieces of Gold in all the Rooms, no matter how many pieces there are in the Room
(see Figure 7).

Fig. 7. The excerpt of a MazeGame model before and after removing all Gold

To specify the transformation pattern, a user performs a demonstration on a Room
that contains two pieces of Gold (two operations performed - see List 2).

List 2 – Operations for demonstrating removing all pieces of Gold

Sequence Operation Performed
1 Remove Gold1 in Root.TextGameFolder.Room3
2 Remove Gold2 in Root.TextGameFolder.Room3

End-User Support for Debugging Demonstration-Based Model Transformation Execution 95

Fig. 8. Debugging the transformation pattern of Example 3

Without giving further refinement on the transformation actions, the user may
complete the demonstration. When executing the generated transformation pattern on
the model, however, it is found that the Rooms that contain only one piece of Gold
were not transformed as expected. To track the error, the pattern can be re-executed
step-by-step using MTBD Debugger. As listed in the Pattern Execution view, we can
see that there are two operations in this pattern, and each operation requires a different
target element (i.e., the Gold to remove). When the Room contains only one piece of
Gold, the second operation cannot be provided with a correct operand as shown in
Figure 8. Thus, the problem of this bug comes from the fact that the transformation
actions are not generic so that it always requires a fixed number of model elements to
enable the correct transformation. The correct way to use MTBD is to make the
demonstration concise, such that users should only demonstrate a single case followed
by identifying the necessary generic operations. Thus, the correct demonstration
should be done by removing only one piece of Gold and then marking it as generic.

Debugging Example 4. Following Example 3, the user may re-demonstrate the
removal of Gold pieces by only performing a single removal operation. However, the
wrong transformation pattern will be generated again due to the user forgetting to
mark the operation as generic. This time, when the pattern is executed, only one piece
of Gold can be removed in each Room. To track the error, the MTBD Debugger can
reveal whether each operation is generic. When stepping through the execution in
Room3 (Figure 9, which contains two pieces of Gold), the user finds that another
Room is matched after removing only one piece of Gold. The user may think that the
problem is caused by the generic operations, so by double-checking the generic status,
it can be seen from the Pattern Execution view that the removal operation is not
generic (the highlighted box marked as false in the middle of the figure).

96 Y. Sun and J. Gray

Fig. 9. Debugging the transformation pattern of Example 4

Debugging Example 5. Another common error that occurs when using MTBD is
choosing the wrong element in the demonstration process, particularly in the attribute
editing demonstration. For example, the user may want to replace all the Monsters
with Weapons, as well as doubling the strength of the new Weapons, as shown in
Figure 10.

Monster1.Strength = 76 NewWeapon.Strength = 152

Fig. 10. The excerpt of a MazeGame model before and after doubling the new weapon

The recorded operations are in List 3. An attribute transformation is demonstrated
using the attribute refactoring editor. The expected computation of the strength is to
use the removed Monster and double its strength value. However, operation 3 in the
list mistakenly selects the wrong Monster (i.e., Monster1 in Room1) which is not the
Monster that has just been removed (i.e., Monster1 in Room2). The wrong execution
result triggered by this bug is that the new Weapon being added in the Room uses the
strength value of the Monster in a different Room, which is not what user expects to
double.

End-User Support for Debugging Demonstration-Based Model Transformation Execution 97

Fig. 11. Debugging the transformation pattern of Example 5

 List 3 – Operations for demonstrating replacing a Monster and doubling the strength

Sequence Operation Performed
1 Remove Monster1 in Root.TextGameFolder.Room2
2 Add a Weapon in Root.TextGameFolder.Room2
3 Set Root.TextGameFolder.Room2.Weapon.strength

 = Root.TextGameFolder.Room1.Monster1.strength * 2 = 152

This type of bug can be located easily using MTBD Debugger, as shown in Figure
11. When we step through each operation, the used elements in the Pattern Matching
view cab be observed. In this case, the remove element operation is done on Monster1
in Room2, while the change attribute operation uses Monster1 in Room7, which
means that we probably selected the wrong element in the demonstration of the
attribute change process.

5 Related Works

As one of the most popular MTLs, ATL has an associated debugger [9] to provide the
basic debugging options similar to general-purpose programming languages, such as
step-by-step execution, setting up breakpoints, and watching current variables.
Additionally, simple navigation in source and target models is supported. However,
all these debugging options are closely related with the language constructs, so it is
inappropriate for general end-users who do not have the knowledge of ATL.

98 Y. Sun and J. Gray

Similarly, in the Fujaba modeling environment, Triple Graphical Grammar (TGG)
rules [10] can be compiled into Fujaba diagrams implemented in Java, which allows
debugging TGG rules directly [11].

Schoenboeck et al. applied a model transformation debugging approach [12] using
Transformation Nets (TNs), which is a type of colored Petri Net. The original source
and target metamodels are used as the input to derive places in TNs, while model
instances are represented as tokens with the places. The actual transformation logic is
reflected by the transitions. The derived transformation provides a formalism to
describe the runtime semantics and enable the execution of model transformations.
An interactive OCL console has been provided to enable users to debug the execution
process. TNs are at a higher level of abstraction than MTLs (e.g., QVT is used as the
base in this approach), so this approach helps to isolate users from knowing the low-
level execution details. Although TNs can be considered as a domain-specific
modeling language (DSML) to assist debugging model transformations, it is a
different formalism from the specific model transformation area and can be used as a
general-purpose specification in many domains, which inevitably limits its end-user
friendliness. Most users may find it challenging to switch their model transformation
tasks to colored Petri Net transition processes. TNs also aim at defining the
underlying operational semantics that are hidden in the model transformation rules,
and this exerts an extra burden in its understandability to general end-users and
domain experts.

A similar work has been done by Hillberd [13] which presents forensic debugging
techniques to model transformation by using the trace information between source
and target model instances. The trace information can be used to answer debugging
questions in the form of queries that help localize the bugs. In addition, a technique
using program slicing to further narrow the area of a potential bug is also shown.
Compared with MTBD Debugger, which is a live debugging tool, this work of
Hillberd et al. focuses on a different context – forensic debugging. Similar to the ATL
debugger, their work aims at providing debugging support to general MTLs used in
MDE.

Another related work is focused on debugging a different type of model
transformation – Model-to-text (M2T). Dhoolia et al. present an approach for
assisting with fault localization in M2T transformations [14]. The basic idea is to
create marks in the input-model elements, followed by propagating the marks to the
output text during the whole transformation, so that a dynamic process to trace the
flow of data from the transform input to the transform output can be realized. Using
the generated mark logs and a location where a missing or incorrect string occurs in
the output, the user can examine the fault space incrementally.

6 Conclusions and Future Work

Our recent work has focused on tools and concepts that allow end-users to participate
in the model transformation process by allowing them to record a desired
transformation directly on instance models, rather than applying transformation

End-User Support for Debugging Demonstration-Based Model Transformation Execution 99

languages that may be unfamiliar to them. This paper extends end-user participation
in model transformation by presenting a technique that supports end-user debugging
of model transformation patterns that were initially recorded through user
demonstration. The MTBD Debugger allows users to step through each action in the
transformation pattern and check all the relevant information through two views. The
MTBD Debugger has been implemented as an extension to the MTBD execution
engine and integrated with the MTBD framework.

The MTBD debugger can be applied to the core elements specified in a model
transformation pattern. However, one drawback of the current views used in the
debugger is that they are textual and not visual. For instance, the Pattern Matching
View shows all the needed elements for each action. However, the containment
relationship among these elements cannot be seen clearly. It would be very helpful to
have another view that shows all the currently involved model elements and their
relationships visually. Future work will provide a view that can capture the specific
part of the current model that is used for the next transformation action. This can
enable users to catch and check the matched elements more easily.

Another option that is useful in the general debugging process, but missing in the
MTBD debugger, is the concept of setting a breakpoint. In some large model
transformation scenarios (e.g., scaling up a base model to a large and complex state),
it is not necessary to watch all the actions being executed one-by-one, so setting a
breakpoint would make debugging more useful in this case. Thus, in the Pattern
Execution View, it would be helpful to enable the breakpoint setup in the action
execution list.

Acknowledgement. This work is supported by NSF CAREER award CCF-1052616.

References

1. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Approaches.
IBM Systems Journal 45(3), 621–645 (2006)

2. Sendall, S., Kozaczynski, W.: Model Transformation - The Heart and Soul of Model-
Driven Software Development. IEEE Software, Special Issue on Model Driven Software
Development 20(5), 42–45 (2003)

3. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards Model Transformation
Generation By-Example. In: The 40th Hawaii International Conference on Systems
Science, Big Island, HI, p. 285 (January 2007)

4. Varró, D.: Model Transformation By Example. In: Wang, J., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer, Heidelberg (2006)

5. Sun, Y., White, J., Gray, J.: Model Transformation By Demonstration. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Heidelberg
(2009)

6. Sun, Y.: Model Scalability Using a Model Recording and Inference Engine. In:
International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion (SPLASH 2010), Reno, NV, pp. 211–212
(October 2010)

100 Y. Sun and J. Gray

7. Balogh, Z., Varró, D.: Model Transformation by Example using Inductive Logic
Programming. Software and Systems Modeling 8(3), 347–364 (2009)

8. White, J., Schmidt, D., Mulligan, S.: The Generic Eclipse Modeling System. In: Model-
Driven Development Tool Implementer’s Forum at the 45th International Conference on
Objects, Models, Components and Patterns, Zurich Switzerland (June 2007)

9. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL: Eclipse Support for Model
Transformation. In: The Eclipse Technology eXchange Workshop (eTX) of the European
Conference on Object-Oriented Programming (ECOOP), Nantes, France (July 2006)

10. Königs, A.: Model Transformation with TGGs. In: Model Transformations in Practice
Workshop of MoDELS 2005, Montego Bay, Jamaica (September 2005)

11. Wagner, R.: Developing Model Transformations with Fujaba. International Fujaba Days,
Bayreuth, Germany, pp. 79–82 (September 2006)

12. Schoenboeck, J., Kappel, G., Kusel, A., Retschitzegger, W., Schwinger, W., Wimmer, M.:
Catch Me If You Can – Debugging Support for Model Transformations. In: Ghosh, S.
(ed.) MODELS 2009. LNCS, vol. 6002, pp. 5–20. Springer, Heidelberg (2010)

13. Hibberd, M., Lawley, M., Raymond, K.: Forensic Debugging of Model Transformations.
In: International Conference on Model Driven Engineering Languages and Systems,
Nashville, TN, pp. 589–604 (October 2007)

14. Dhoolia, P., Mani, S., Sinha, V.S., Sinha, S.: Debugging Model-Transformation Failures
Using Dynamic Tainting. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 26–51. Springer, Heidelberg (2010)

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming 72(1/2), 31–39 (2008)

16. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
Transformation By-Example: A Survey of the First Wave. In: Düsterhöft, A., Klettke, M.,
Schewe, K.-D. (eds.) Thalheim Festschrift. LNCS, vol. 7260, pp. 197–215. Springer,
Heidelberg (2012)

17. Sun, Y., Gray, J., Langer, P., Kappel, G., Wimmer, M., White, J.: A WYSIWYG
Approach to Support Layout Configuration in Model Evolution. In: Emerging
Technologies for the Evolution and Maintenance of Software Models. Idea Group (2011)

18. Sun, Y., White, J., Gray, J., Gokhale, A.: Model-Driven Automated Error Recovery in
Cloud Computing. In: Model-driven Analysis and Software Development: Architectures
and Functions, Hershey, PA, pp. 136–155. IGI Global (2009)

19. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Retschitzegger,
W., Schwinger, W.: An Example is Worth a Thousand Words: Composite Operation
Modeling By-Example. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 271–285. Springer, Heidelberg (2009)

