
A WYSIWYG Approach to Support Layout Configuration in Model Evolution

Yu Sun1, Jeff Gray2, Philip Langer3, Gerti Kappel4, Manuel Wimmer4, Jules White5

1Department of Computer and Information Sciences, University of Alabama at Birmingham
2Department of Computer Science, University of Alabama

3Department of Telecooperation, Johannes Kepler University
4Business Informatics Group, Vienna University of Technology

5Department of Electrical and Computer Engineering, Virginia Tech

ABSTRACT

Model evolution has become an essential activity in software development with the ongoing adoption of
domain-specific modeling, which is commonly supported and automated by using model transformation
techniques. Although a number of model transformation languages and tools have been developed to
support model evolution activities, the layout of visual models in the evolution process is not often
considered. In many cases, after a transformation is performed the layout of the resulting model must be
manually rearranged, which can be time consuming and error-prone. The automatic layout arrangement
features provided by some modeling tools usually do not take a user’s preferences or the semantics of the
model into consideration, and therefore could potentially alter the desired layout in an undesired manner.
This paper describes a new approach to enable users to specify the model layout as a demonstrated model
transformation. We applied the Model Transformation By Demonstration (MTBD) approach and
extended it to let users specify the layout information using the concept of “What You See Is What You
Get” (WYSIWYG), so that the complex layout specification can be simplified.

KEYWORDS

INTRODUCTION

With the ongoing adoption of Domain-Specific Modeling (DSM) (Gray et al., 2007), models are
emerging as first-class entities in many domains and play an increasingly significant role in every phase
of software development (i.e., from system requirements analysis and design, to software implementation
and maintenance). In the DSM context, whenever a software system needs to evolve, the models used to
represent the system should evolve accordingly. For instance, system design models often need to be
changed to adapt to new system requirements (Greenfield & Short, 2004). As an additional example, it is
sometimes necessary to apply model refactoring (France et al., 2003) to optimize the internal structure of
the implementation models (i.e., models used to generate implementation code through code generators).
Furthermore, models used to control the deployment of a software system are occasionally scaled up for
the purpose of improving performance (Sun et al., 2009a).

Although manual model evolution is often tedious and error-prone, automating complex model evolution
tasks using model transformation technologies has become a popular practice (Gray et al., 2006). A
number of executable model transformation languages (e.g., QVT	
 (http://www.omg.org/cgi-
bin/doc?ptc/2005-11-01, 2010), ATL (Jouault et al., 2008)) have been developed to enable users to
specify model transformation rules, which take an input model and evolve it to produce an output model
automatically.

Open problems. Although the implementation of model evolution concerning the abstract syntax has
been well-supported, the layout of models is rarely considered in the traditional model evolution process.
Most evolution efforts focus only on the semantic aspects of the evolution (e.g., adding or removing
necessary model elements and connections, modifying attributes of model elements), and often ignore

model layout configuration concerns during the evolution (e.g., positions of model elements, font, color
and size used in labels). For instance, executing a set of model transformation rules to add model
elements and connections will sometimes lead to placing all the newly created elements in a random
location in the model editor.

Ignoring the desired layout after model evolution has a strong potential to undermine the readability and
understandability of the evolved model, and may even unexpectedly affect the implicit semantics under
certain circumstances. For example, users may accidentally misunderstand the system because of a
disordered layout (e.g., a sequence of actions to be executed is represented by a set of nodes with arrows
indicating the sequence, but a disordered arrangement of the nodes may lead to a challenge in identifying
the correct execution order). Furthermore, the positions of model elements and connections may
correspond to special coordinates in the real world, such that an unoptimized layout could lead to
unexpected problems for the actual system (e.g., the configuration of the actual hardware devices and
cables might be based on the positions of model elements and connections representing them, or the color
of the elements might represent the running status of the actual devices). It may be possible to incorporate
the layout information related with the implicit semantics into the metamodel as part of the abstract
syntax, but a change to the metamodel may trigger further model migration problems (Sprinkle, 2003).
Although it is very direct to manually adjust the layout, it becomes a tedious, timing-consuming task
when a larger number of model elements are involved in the model evolution process. Therefore, while
the semantic concerns of model evolution have been implemented and automated, it is indispensible to
realize the automatic configuration of the layout as part of the model evolution process.

The most commonly used approach to automatically arrange the layout of models is to apply layout
algorithms (Battista & Tamassia, 1993; Misue et al., 1995)	
 after the evolution process. A number of
modeling tools (e.g., GMF (http://www.eclipse.org/modeling/gmf, 2011), GEMS
(http://www.eclipse.org/gmt/gems, 2011), GME (Ledeczi et al., 2001), MetaCase+
(http://www.metacase.com, 2011)) provide automatic layout functionality in their model editors using
specific algorithms. They can rearrange the layout of the models and make them more readable by
avoiding the overlaps of model elements and connections, adding blank spaces among model elements, or
grouping the same type of elements together. However, most of these algorithms do not consider the
implicit semantics of the model elements and connections; the result being that a readable model does not
necessarily result in an optimized system if part of the system implementation depends on the layout
configuration. Furthermore, fixed layout algorithms usually cannot consider the underlying mental map of
individual users (i.e., a user’s understanding of the relationship between the entities in a diagram) (Misue
et al., 1995) into consideration. Although a user might prefer to see different types of model elements
grouped closely, the automatic layout algorithm might destroy the user’s mental map by separating them.
Although a few algorithms integrate implicit semantic issues or common mental maps (e.g., placing the
parent model elements being extended above their children model elements), they are often fixed in the
model editors and cannot be customized easily according to a user’s preference, which is inadequate for
handling various kinds of implicit semantic issues and mental maps.

An alternative to configuring the layout is to change the layout properties as part of the model evolution
using a model transformation process. When specifying model transformation rules to evolve the
semantic aspect of the model, extra rules may be given to handle the layout configuration. Although this
offers a flexible way to enable users to customize the preferred implicit semantics and mental maps, some
drawbacks exist. First of all, it forces the layout to be a crosscutting concern that becomes coupled with
the semantics of the model transformation. In addition, testing and debugging the layout configuration are
done by running the transformation and checking the final model, which is not direct and convenient.
Imagine configuring the positions of a large number of newly added elements, which may require a great
deal of effort to finally confirm the precise and desirable coordinate values for all of the modeling
elements. Finally, implementing model transformations usually requires the user to know a model
transformation language and the metamodel definition of the domain. For general users who are not

familiar with model transformation languages or abstract metamodel definitions, they may be prevented
from configuring the desired layout for the models they are using.

Therefore, a desirable approach to configure the model layout concerns in model evolution tasks should
include the following features:

1) It should enable users to customize the layout configuration flexibly in order to realize their
desired implicit semantics and mental maps.

2) It should be separated clearly from the semantic aspect of the model evolution.
3) It should enable end-users to configure and test the result using the notation related to their

domain.
4) It should be at a level of abstraction that is appropriate for end-user adoption, and not tied to low-

level accident complexities of the transformation process.

Solution approach → Configuring model layout in a WYSIWYG style. This chapter presents an
innovative approach to enable users to specify and customize the preferred layout information by directly
showing and demonstrating the layout configuration.

This approach is based on the idea of Model Transformation By Demonstration (MTBD) (Sun et al.,
2009; Langer et al., 2010), which aims to simplify the implementation of model transformations by
demonstrating specific model transformation tasks on concrete examples, and then inferring the generic
transformation patterns automatically. With MTBD, users do not need to know any model transformation
languages and are fully isolated from abstract metamodel definitions. MTBD has already been applied
successfully in a number of model evolution applications (Sun et al., 2009a; Sun et al., 2009b; Langer et
al., 2010), showing improvement in the efficiency and simplicity of implementing model transformations.

By following and extending the concepts of MTBD, we have developed an approach that enables users to
demonstrate the desired layout configuration in a graphical model editor. After demonstrating the
semantic concerns of the model evolution using MTBD, users can continue to select target model
elements and place them at the correct positions. At the same time, the underlying MTBD engine records
all of the user’s operations and then generates a transformation pattern that incorporates both the semantic
evolution and the layout configuration. Various options can be applied when specifying the positions,
such as when model elements are placed using absolute coordinates in the model editor. Users can also
choose one or multiple elements as a reference to configure the relative coordinates, or the reference
could be the whole model instance whereby users configure the relative coordinates to the boundary of
the model. Moreover, other layout information such as the font, color and size used in the model editor
can also be configured and integrated into the model transformation.

By demonstrating the layout configuration directly, rather than specifying it explicitly in model
transformation rules, users are able to customize their desired layout and preserve their mental maps (or
other implicit semantic issues) without knowing any model transformation language or metamodel
definition. The approach also offers a more convenient environment to give precise positions as well as to
test and debug the resulting layout transformation. The demonstration of layout configuration occurs after
the demonstration of the semantic evolution, so that the two concepts are separated without being tangled
as crosscutting concerns.

The rest of the chapter is organized as follows. We first illustrate the problems and challenges of layout
configuration during model transformation using two motivating examples, followed by the analysis on
the related model configuration techniques. Then, the MTBD framework is introduced, which is the basis
for the layout configuration approach. To solve the two motivating examples, we will present the layout
configuration extensions to MTBD and the implementation details. Finally, we offer concluding remarks
and summarize future work.

MOTIVATING EXAMPLES

In this section, we illustrate the problems of layout configuration during model evolution using two
motivating examples. For each example, we first explain the model evolution scenario as the underlying
context, followed by showing what the model will look like after traditional model transformation is
applied without layout configuration. We also explain why the fixed layout algorithms cannot handle
most implicit semantic issues and user mental maps. Additionally, an excerpt of the model transformation
rules written in a specific model transformation language will be given to explain why specifying the
layout configuration explicitly with manually created model transformation rules is not a preferred
approach.

Evolving Stochastic Reward Nets Models

Stochastic Reward Nets (SRNs) (Muppala et al., 1994) can be used for evaluating the reliability of
complex distributed systems. SRNs have been used extensively for designing and modeling reliability and
performance of different types of systems. The Stochastic Reward Net Modeling Language (SRNML)
(Kogekar et al., 2006) was developed to describe SRN models of large distributed systems, which share
similar goals with performance-based modeling extensions for the UML, such as the schedulability,
performance, and time profiles. For example, the SRN model defined by SRNML in Figure 1a depicts the
Reactor pattern (Schmidt et al., 2000) in middleware for network services, providing mechanisms to
handle synchronous event demultiplexing and dispatching.

	

a) SRN model before evolution b) SRN model after evolution with configuration layout

	

c) SRN model after evolution with layout configured using auto-layout function

Figure 1. SRN models

	

d) SRN model after evolution with desired layout configuration

Figure 1. SRN models (continued)

In the Reactor pattern, an application registers an event handler with the event demultiplexer and
delegates the incoming events to it. On the occurrence of an event, the demultiplexer dispatches the event
to its corresponding event handler by making a callback. An SRN model consists of two parts: the event
types handled by a reactor (the top part of Figure 1a) and the associated execution snapshot (the bottom
part of Figure 1a). The execution snapshot depicts the underlying mechanism for handling the event
types, so any changes made to the event types will require corresponding changes to the snapshot.

Model evolution scenario in SRNML: A typical SRN model evolution scenario arises from the addition
of new event types and connections between their corresponding event handlers. As shown in Figure 1d,
when two new event types (3 and 4) need to be modeled, two new sets of event types and connections
(i.e., from A3 to Sr3, from A4 to Sr4) should be added. Also, the snapshot model should be scaled
accordingly by adding new Snapshot Places (i.e., SnpLnProg3, SnpLnProg4), Snapshot Transitions from
starting place to end place (i.e., TStSnp3, TEnSnp3, TStSnp4, TEnSnp4), Snapshot Transitions between
each new place and each existing place (i.e., TProcSnp3,1, TProcSnp1,3, TProcSnp3,2, TProcSnp2,3,

TProcSnp4,1, TProcSnp1,4, TProcSnp4,2, TProcSnp2,4, TProcSnp3,4, TProcSnp4,3), as well as all the
needed connections between places and transitions.

A number of new elements and connections are created during this model evolution scenario. The
creation process can be automated by executing model transformation rules or calling APIs provided by
the modeling environment. Figure 1b shows the SRN model after executing the transformation rules
defined in the Embedded Constraint Language (ECL) (Lin et al., 2008), which scale the model from 2
event types to 4. Although the correct number of elements (i.e., 26 model elements) are created and the
correct connections are made (i.e., 38 connections), all the newly created elements and connections are
placed randomly in the upper-left corner of the editor and overlapped with each other, which is
unreadable without arranging the layout. However, manual layout arrangement is tedious and time-
consuming, especially when the model is scaled to adapt a larger number of event types (e.g., over 100
new elements will be created when scaling a SRN model from 5 event types to 10, and over 150
connections are needed to connect them).

One option that avoids manual layout arrangement is to use the auto-layout functionality provided by the
modeling tool. For instance, Figure 1c shows the scaled SRN model after applying the auto-layout
function embedded in the GMF editor. Compared with Figure 1b, it can be seen that the overlaps of all
the newly created elements are removed; the location of each element is changed so that the distances
between each two elements are more similar; and all the elements connected are grouped together. A clear
and readable model is obtained by a single mouse-click. However, a readable model does not necessarily
preserve the implicit semantics and a user’s mental map. As shown in Figure 1c, it is challenging to
determine the corresponding part in the execution snapshot for each of the existing event types, and in
Figure 1b the execution snapshot is clearly separated by different event types. On the other hand, the
layout of event definitions in Figure 1c is changed from the original horizontal arrangement to vertical.
Although it does not significantly affect the understandability or implicit semantics of the definitions,
users might have their own preferences of placing the event definition horizontally, and the auto-layout
functionality obviously destroyed this particular mental map.

An alternative layout configuration approach to address the problems associated with auto-layout
algorithms is to specify layout information in the model transformation rules (i.e., the <x, y> coordinates
of model elements is often an inherent property that can be modified with model transformation
languages). For instance, Figure 2 shows an excerpt of the ECL code that configures layout information
in the model transformation process. Each model element has a Location attribute that can be used to
configure the coordinates of the element, and setting this attribute after adding the new element can result
in placing it at the given position. Although users can control fully the configuration of the layout, it
forces the semantic aspect of the model transformation rules to be entangled with layout concerns, the
consequence being that any changes to the transformation rules about the model elements might lead to
modifications on the layout configurations. Such an approach makes a transformation rule less cohesive.
Furthermore, to test and debug the layout configuration, executing the rules and adjusting the
configurations will have to be iterated, which is a tedious and time-consuming process. This task becomes
more challenging when many relative coordinate configurations are involved. Additionally, adding the
layout configuration in the transformation rules requires users to understand the model transformation
language, the layout configuration APIs, as well as the metamodel definition. In many cases, when end-
users (e.g., domain experts who are not familiar with model transformation languages) encounter the
layout problems, it would be challenging for them to learn the languages and metamodel definitions.
strategy addEvents(min_new, max_new : integer; TEnSnpGuardStr : string)
{
 if (min_new <= max_new) then
 addNewEvent(min_new, TEnSnpGuardStr);
 addEvents(min_new+1, max_new, TEnSnpGuardStr);
 endif;
 }

strategy addNewEvent(event_num : integer; TEnSnpGuardStr : string)
{
 declare start, stTran, inProg, endTran : atom;
 declare TStSnp_guard : string;

 start := findAtom("StSnpSht");
 stTran := addAtom("ImmTransition", "TStSnp" + intToString(event_num));
 stTran.setLocation(500, 600);
 TStSnp_guard := "(#S" + intToString(event_num) + " == 1)?1 : 0";
 stTran.setAttribute("Guard", TStSnp_guard);
 inProg := addAtom("Place", "SnpInProg" + intToString(event_num));
 inProg.setLocation(stTran.getLocation().getX() + 100, 600);
 endTran := addAtom("ImmTransition", "TEnSnp" + intToString(event_num));
 endTran.setLocation(100, getUpperMostAtom().getLocation().getY() + 100);
 endTran.setAttribute("Guard", TEnSnpGuardStr);

 addConnection("InpImmedArc", start, stTran);
 addConnection("OutImmedArc", stTran, inProg);
 addConnection("InpImmedArc", inProg, endTran);
 addConnection("OutImmedArc", endTran, start);
}
...
Figure 2. An excerpt of ECL to complete the model evolution with integrated layout configuration (adapted from (Lin et

al. 2006))

The Administration of Cloud Computing Management Models

Another example is based on the Cloud Computing Management Modeling Language (C2M2L) (Sun et
al., 2009a) - a domain-specific modeling language (DSML) constructed specifically to describe the
deployment of application nodes in a cloud computing server that monitors the running status of each
node. For instance, the top of Figure 3 shows a diagram of an EJB cloud application deployed in Amazon
EC2 (http://aws.amazon.com/ec2, 2011), containing several Nodes, such as Web Tier Instance, Middle
Tier Instance, Data Tier Instance all connected to the Load Balancer. NodeServices (not shown in the
figure) are included in each Node (e.g., Apache, Tomcat, MySQL, JBoss, OpenSSH) to define the services
needed for each tier instance. A list of properties can be configured for each Node, such as the name of
the host (i.e., HostName), the running status of the Node (i.e., IsWorking), the load of the CPU (i.e.,
CPULoad), and the changing rate of the CPU load (i.e., CPULoadRateOfChange). The connections
between Nodes indicate the data flows from the source Node to the target Node. This model configures
the deployment and execution parameters of an application in a cloud computing server.

To facilitate the management of applications in the cloud, a causal relationship is built between the
running applications and the model. Changes to the state of the cloud application must be communicated
back to the modeling tool and translated into changes in the elements of the model, while changes from
the model must also be pushed back into the cloud. Therefore, the models defined by C2M2L serve as an
interface to deploy, monitor, and manage the applications in the cloud at runtime.

Model evolution scenario in C2M2L: One essential task in the management of applications in the cloud
is to ensure that each node is handling a proper amount of work load without being overloaded. For
instance, if the CPULoad of a certain Node is out of the normal range (e.g., CPULoad > 100), the Node
will stop working, so the connection between the failed Node and the NodeBalancer needs to be removed.
Furthermore, Nodes containing the same NodeServices and configuration, and the corresponding,
connections need to be replicated in order to balance the work load, as shown in the bottom of Figure 3.

When managing the C2M2L models, layout configuration is also indispensible. For instance, when a
failed Node is replaced with two new Nodes, the new Nodes should be placed under the original Node as
illustrated in the bottom of Figure 3. Also, since the failed Node is no longer used, it is better to place it at
the top of the editor rather than taking space among the working Nodes. To improve the management

process and make it more illustrative, it is also desired to highlight the failed Node with a red background
color, and to use the green for the newly added Nodes.

This layout configuration process will be challenging to accomplish manually, particularly when a large
number of application Nodes are running in the cloud. Because the existing auto-layout functionality
cannot preserve such kind of layout requirements, it is necessary to have an approach to automate the
layout configuration process without using model transformation languages or knowing metamodel
definitions.

Figure 3. A C2M2L model with three Nodes overloaded (top) and the model after removing and replicating the

overloaded Nodes (bottom)

RELATED WORKS

A compact and readable diagram layout is vital for leveraging the full potential of graphical DSMLs.
Because models are frequently subjected to evolution and transformation during their life cycles,
techniques enabling the automatic adaption of a model’s diagram layout become crucial for retaining
model compactness and readability.

Concerning the goal of the demonstration-based approach to layout configuration as presented in this
chapter, we distinguish between two categories of related work: (i) approaches aiming to improve single
diagram layouts, and (ii) approaches for optimizing sequences of diagram layouts. In this chapter, we
describe a novel technique for the latter category, i.e., deriving a new version of an existing diagram
layout after its underlying model has been transformed. Nevertheless, one way of deriving a new version
of a diagram layout is to simply apply single diagram layout algorithms after each change of the
underlying model, which is often referred to as dynamic graph drawing in the literature (Di Battista et al.,
1998).

Layout Configuration for Single Diagrams

Due to the graph-based nature of diagrams, algorithms for configuring the layout of diagrams are strongly
related to algorithms solving the graph drawing problem (Di Battista et al., 1998). In this research area,
several different approaches have been proposed. A popular representative of such approaches is the
spring embedder layout (Fruchterman & Reingold, 1991), which is a force-driven layout algorithm. In
particular, each node in a graph contains attractive and repulsive forces that either move an element
toward or away from other nodes. Iteratively, each node is moved until the sum of all forces settles at a
minimum. Although such algorithms are capable of largely avoiding overlapping nodes and edges in a
diagram, due to their generic nature, they do not take type information of graph nodes and domain-
specific layout preferences into account. However, domain-specific layout patterns, such as horizontal
tree layouts for control flow languages, are commonly applied in practice to support users in
understanding a diagram. Therefore, domain-specific layout algorithms have been developed which place
nodes and edges according to certain layout constraints or layout rules. Hower and Graf (Hower & Graf,
1996) provided an extensive survey on constraint-based layout approaches in several application domains.
More recently, Dwyer et al. proposed an authoring tool specifically designed for network diagrams that
also places elements according to domain-specific layout constraints (Dwyer et al., 2009). A constraint
solver computes a solution for these declarative constraints to produce an improved diagram layout.
Layout-based approaches employ domain-specific layout rules instead of constraints. As proposed by
Maier and Minas (Maier & Minas, 2009), a rule consists of a condition and an action that is executed if
the condition is fulfilled. For instance, a rule might be activated as soon as an element is too small for its
compartments (condition) and induce a resizing of the element (action).

Generic, as well as domain-specific layout algorithms, also found their way into several graphical
modeling tools. For instance, UML tools such as ArgoUML, Visual Paradigm , and Enterprise Architect,
as well as meta-modeling tools such as GMF, GEMS, GME, and MetaCase+ provide automatic layout
functionality. Most modeling tools use domain-specific layout algorithms because they are tailored for
specific modeling languages. Metamodeling tools usually provide generic layout algorithms for modeling
editors that are created from metamodel specifications. Additionally, many model editors also offer
extension points for attaching domain-specific layout facilities.

Layout Configuration for Diagram Sequences

The aforementioned approaches focus on establishing a diagram layout from scratch or improving an
existing diagram layout, but they are not tailored to optimize the layout across sequences of diagrams.
However, when a model is transformed, the diagram has to be adjusted to the evolved model. One major
requirement in this task is to preserve the mental map (Misue et al., 1995) across one or more

transformations of the diagram’s underlying model. This aspect is the particular focus of the previous
works (Jucknath-John et al., 2006; Pilgrim, 2007; Johannes & Gaul, 2009).

Jucknath-John et al. aim at layout graphs that are transformed by a sequence of endogenous graph
transformations. The design rationale of their algorithm is to (i) achieve an optimal quality for each single
graph layout, (ii) retain the mental map of a graph layout, (iii) consider its future extension, and (iv)
identify the changes between two succeeding graph layouts by visually emphasizing the differences. To
achieve these goals, the authors propose an iterative layout algorithm based on the aforementioned spring
embedder layout (Fruchterman & Reingold, 1991). In particular, the spring embedder layout is extended
by the concept of node aging and protection of the layout of senior nodes. By this, senior nodes (i.e.,
nodes that have been introduced earlier than others) are less likely to be repositioned by the algorithm
than younger nodes in order to retain the mental map of the graph layout.

The focus of Pilgrim is to retain the mental map in exogenous model transformations. The transformation
of the semantic model is applied using ATL (Jouault & Kurtev, 2005). The proposed algorithm takes the
transformed input model, the input diagram layout, the output model, and the transformation trace as
input to create a new diagram layout for the generated output model. Nodes representing elements in the
output model are placed according to the position of nodes representing input model elements linked by
the transformation trace in order to retain the mental map. The output diagram layout is optimized by
scaling and adjusting the nodes to avoid overlaps. Furthermore, a 3D editor is used to display the source
diagram and target diagram (and its correspondences in terms of traces) in a single window.

Johannes and Gaul considered diagram layout when composing domain-specific models. In their
approach, the layout composition information is delivered through a graphical model composition script,
which specifies how the semantic models should be composed. After the composed model is created, the
diagrams of the composed model are merged into a new composed diagram according to the positions in
the graphical model composition script. Johannes and Gaul also apply algorithms to adjust the final layout
to remove overlaps.

All mentioned approaches for configuring the layout of diagram sequences particularly focus on retaining
the mental map in endogenous or exogenous transformations. Pilgrim and Johannes and Gaul tackle this
issue for exogenous transformations. Only Jucknath-John et al., as our approach, focus on endogenous
transformations. In the approach of Jucknath-John et al., the position of existing nodes is protected by
applying the concept of node aging, but in contrast to our approach, they do not consider transformation
rule-specific layout preferences. With specific transformation rule layout preferences, the transformation
engineer may regard certain aspects of a transformation in the resulting layout which enables users to
understand a diagram better, especially in the context of a specific evolution task after the transformation
has been performed. Only Johannes and Gaul partially consider this aspect because the resulting diagram
layout is set up according to the positioning in the graphical composition script. However, they do not
support the configuration of relative positioning of nodes to certain existing context nodes of a
transformation. Additionally, all aforementioned approaches do not support the automatic assignment of
other layout properties (e.g., background colors) after a transformation has been performed. Another
major difference of our approach to these existing approaches is the adoption of the WYSIWYG
technique to easily specify the desired layout after a transformation is created by demonstration.

INTRODUCTION TO MODEL TRANSFORMATION BY DEMONSTRATION

Our solution to the auto-layout customization problem is to use a demonstration-based technique to
support specification of the layout configuration by automating the whole process as model
transformations. The idea is based on our previous work on Model Transformation By Demonstration
(MTBD), which is a new approach to implement endogenous model transformations, with the goal being
to enable general users (e.g., domain experts or non-programmers) to realize transformation tasks without
knowing model transformation languages or metamodel definitions. In this section, we introduce MTBD,
and then explain how to use MTBD to support general model evolution tasks by using the motivating

examples presented previously. The extensions to support layout configuration will be presented in the
next section.

Overview of MTBD

The basic idea of MTBD is that rather than manually writing model transformation rules, users are asked
to use concrete model instances and demonstrate how to transform a source model to a target model by
directly editing and changing it. During the demonstration process, a recording and inference engine
captures all of the user operations and automatically infers a transformation pattern that summarizes the
desired evolution task captured as a transformation. This generated pattern can be executed by the engine
in any model instance to carry out the same evolution task on other parts of a model.

Figure 4. Overview of MTBD

Figure 4 is an overview of the MTBD idea, which consists of the following main steps and components:

Step 1 – User Demonstration and Recording. Users must first give a demonstration by directly editing a
model instance (e.g., add a new model element or connection, modify the attribute of a model element,
connect two model elements) to simulate an evolution task. During the demonstration, users are expected
to perform operations not only on model elements and connections, but also on their attributes, so that the
attribute evolution can be supported. An attribute refactoring editor has been developed to enable users to
access all the attributes in the current model editor and specify the desired transformation (e.g., string and
arithmetic computation). At the same time, an event listener monitors all the operations occurring in the
model editor and collects the information for each operation in sequence.

Step 2 – Operation Optimization. The list of recorded operations indicates how a model evolution should
be performed. However, not all operations in the list are meaningful. Users may perform useless or
inefficient operations during the demonstration. For instance, without a careful design, it is possible that a
user first adds a new element and modifies its attributes, and then deletes it in another operation later,
with the result being that all the operations regarding this element actually did not take effect in the
transformation process and therefore are meaningless. Thus, after the demonstration, the engine optimizes
the recorded operations to eliminate meaningless actions.

Step 3 – Pattern Inference. With an optimized list of recorded operations, the transformation can be
inferred. Because the MTBD approach does not rely on any model transformation languages, it is not
necessary to generate specific transformation rules, although that is possible. Instead, we generate a
transformation pattern, which summarizes the precondition of a transformation (i.e., where a

transformation should be done) and the actions needed in a transformation (i.e., how a transformation
should be done).

Step 4 – User Refinement. The initial pattern inferred is specific to the demonstration and is usually not
generic and accurate enough for general reuse, due to the limitation on the expressiveness of the user
demonstration. Users are permitted to refine the inferred transformation by providing more feedback for
the desired transformation scenario. For instance, users may give more restrictive preconditions on the
desired evolution, such as “replace element A only if A has no incoming or outgoing connections,” or
“add new element B in C only when the attribute value of C is greater than 200.” Users can also identify
which operations should be generic (i.e., operations should be repeated as long as appropriate model
elements are available, rather than being executed only once). All the user refinements are still performed
at the model instance level without explicitly modifying the metamodel, after which a transformation
pattern will be finalized and stored in the pattern repository for future use.

Step 5 – Pattern Execution. The final generated patterns can be executed on any model instances. Because
a pattern consists of the precondition and the transformation actions, the execution starts with matching
the precondition in the new model instance and then carries out the transformation actions on the matched
locations of the model. Notifications are made to users when the selected model fails to match the
transformation pattern. Multiple transformation patterns can be executed in sequence on the same model,
in order to apply some continuous evolution tasks. The same matching process is taken before executing
each pattern.

Step 6 – Correctness Checking and Debugging. Although the location matching the precondition
guarantees that all transformation actions can be executed with necessary operands, it does not ensure that
executing them will not violate the syntax, semantics definitions or external constraints. Therefore, the
execution of each transformation action will be logged and model instance correctness checking is
performed after every execution. If a certain action violates the metamodel definition, all executed actions
are undone and the whole transformation is cancelled. An execution control component has been
developed as part of MTBD to control the number of execution times, and enable the execution of
multiple patterns together in sequence. A debugger is under development to enable end-users to track the
execution of the transformation pattern without being exposed to low-level execution information.

Using MTBD, users are only involved in editing model instances to demonstrate the model
transformation process including specific attribute configurations and giving feedback after the
demonstration. All of the other procedures (i.e., optimization, inference, generation, execution, and
correctness checking) are fully automated. No model transformation languages are used and the generated
transformation patterns are invisible to users. One demonstration results in a transformation pattern.
Therefore, users are completely isolated from knowing MTLs and the metamodel definition.

Admittedly, a user demonstration is not as expressive and powerful as specified rules, the result being that
MTBD can only support a subset of tasks that can be realized using MTLs (e.g., QVT and ATL). For
example, selecting the element with a certain maximum value can be specified directly with a function
call, but it is challenging to demonstrate by mouse and keyboard. However, MTBD has been applied
successfully in a number of model evolution tasks, such as model refactoring, aspect-oriented modeling,
and model scalability. It has been shown in many cases to be a practical alternative to enable end-users to
realize model evolution tasks without the knowledge of MTLs and metamodels.

Applying MTBD to the SRNML

To better illustrate the idea, we show how to use MTBD to demonstrate scaling of SRN models (the
motivating example from an earler section) without configuring the layout. The demonstration illustrates
how the transformation pattern can be generated and reused to automate the scaling process in other
model instances.

By examining the scalability requirements of the example, the task of adding one more event type to an
existing SRN model consists of the following three steps, as shown in Figure 5:

Step 1. Create a new set of Places, Transitions and connections for the new event type. Specify proper
names for them based on the name of the event.

Step 2. Create the TStSnp and TEnSnp Snapshot Transitions and the SnpInProg Snapshot Place, as well
as the associated connections.

Step 3. For each pair of <existing Snapshot Place, new Snapshot Place>, create two TProcSnp
Transitions and connect their SnpInProg Places to these TProcSnp Transitions.

To give this demonstration, we choose the 2-event SRN model as shown in Figure 1a. Then, we manually
edit the model and demonstrate the task following the three steps. For Step 1, the operations shown in List
1 are performed.

List 1. Operations for Step 1 of example 2.1 in the demonstration

Sequence Operation Performed
1 Add a Place in SRNRoot
2 Create an artificial name with the value: EventName = “3”
3 Set SRNRoot.Place.name = “A” + EventName = “A3”
4 Add a Transition in SRNRoot
5 Set SRNRoot.Transition.name = “B” + EventName = “B3”
6 Add a Place in SRNRoot
7 Set SRNRoot.Place.name = “Sn” + EventName = “Sn3”
8 Add a Transition in SRNRoot
9 Set SRNRoot.Transition.name = “S” + EventName = “S3”

10 Add a Place in SRNRoot
11 Set SRNRoot.Place.name = “Sr” + EventName = “Sr3”
12 Connect SRNRoot.A3 and SRNRoot.B3
13 Connect SRNRoot.B3 and SRNRoot.A3
14 Connect SRNRoot.B3 and SRNRoot.Sn3
15 Connect SRNRoot.Sn3 and SRNRoot.S3
16 Connect SRNRoot.S3 and SRNRoot.Sr3
17 Connect SRNRoot.A3 and SRNRoot.B3

All of these operations are used to create the new elements and necessary connections for the event
definition (i.e., A3, B3, Sn3, S3, Sr3). Each event has a unique event name, and the names of all the newly
created elements are based on this event name (e.g., the new event is called “3,” so the places and
transitions are named as “A3,” “B3,” “Sn3,”). Therefore, Operation 2 is used to manually create a name
for a certain value, which can be reused later in the rest of the demonstration to setup the desired name for
each element. For instance, when setting up the attribute in operations 3, 5, 7, 9, 11, users just need to
give the specific composition of the attributes by using the artificial names and constants, or simply select
an existing attribute value in the attribute refactoring editor. After applying these operations, the model
will have a new event type definition, as shown in Figure 5 (Step 1).

To finish Step 2, the necessary Snapshot Places and Snapshot Transitions are added for the new event
type by performing the operations indicated in List 2. Figure 5 (Step 2) shows the model after these
operations.

List 2. Operations for Step 2 of example 2.1 in the demonstration

Sequence Operation Performed
18 Add a SnpPlace in SRNRoot
19 SetSRNRoot.SnpPlace.name =

“SnpLnProg”+EventName = “SnpLnProg3”
20 Add a SnpTransition in SRNRoot
21 Set SRNRoot.SnpTransition.name =

“TStSnp” + EventName = “TStSnp3”
22 Add a SnpTransition in SRNRoot
23 Set SRNRoot.SnpTransition.name =

 “TEnSnp” + EventName = “TEnSnp3”
24 Connect SRNRoot.StSnpSht and SRNRoot.TStSnp3
25 Connect SRNRoot.TStSnp3 and SRNRoot.SnpLnProg3
26 Connect SRNRoot.SnpLnProg3 and SRNRoot.TEnSnp3
27 Connect SRNRoot.TEnSnp3 and SRNRoot.StSnpSht

To demonstrate Step 3, two Snapshot Transitions for each <existing Snapshot Place, new Snapshot
Place> need to be created. For example, TProcSnp1,3 and TProcSnp3,1 should be added between
SnpLnProg1 and SnpLnProg3, while TProcSnp2,3 and TProcSnp3,2 are needed between SnpLnProg2
and SnpLnProg3. Because the number of the existing Snapshot Place varies in different model instances,
instead of demonstrating the addition of Snapshot Transitions in every pair, we only need to demonstrate
the process for one pair, followed by identifying the operations as generic in the user refinement step.
This is needed so that the engine will generate the correct transformation pattern to repeat these
operations when needed according to the different number of the existing Snapshot Place. The operations
performed are shown in List 3. We select SnpLnProg2 as the existing Snapshot Place, and demonstrate
the creation of Snapshot Transitions - TProcSnp2,3 and TProcSnp3,2.

List 3. Operations for Step 3 in the demonstration of example 2.1
(* represents generic operations to be identified)

Sequence Operation Performed
28* Add a SnpTransition in SRNRoot
29* Set SRNRoot.SnpTransition.name = “TProcSnp” +

SRNRoot.SnpLnProg2.name.subString(9) + “,” + EventName
= “TProcSnp” + “2” + “,” + “3” = “TProcSnp2,3”

30* Add a SnpTransition in SRNRoot
31* Set SRNRoot.SnpTransition.name = “TProcSnp” +

EventName + “,” + SRNRoot.SnpLnProg3.name.subString(9)
= “TProcSnp” + “3” + “,” + “2” = “TProcSnp3,2”

32* Connect SRNRoot.SnpLnProg2 and SRNRoot.TProcSnp2,3
33* Connect SRNRoot.TProcSnp2,3 and SRNRoot.SnpLnProg3
34* Connect SRNRoot.SnpLnProg3 and SRNRoot.TProcSnp3,2
35* Connect SRNRoot.TProcSnp3,2 and SRNRoot.SnpLnProg2

When specifying the name attributes, complex String composition can be given using the Java APIs, as
done in operations 29 and 31. After the demonstration is completed and generic operations are identified
in the user refinement step, the inference engine automatically infers and generates the transformation
pattern, which will be saved in the transformation repository.

After the pattern is saved, a user may select any model instance and a desired transformation pattern, and
the selected model will be scaled by adding a new event type. The execution controller can be used to
enable execution of a pattern multiple times. Figure 1b is the result of adding two event types using the
inferred pattern automatically. Although the correct number of new elements and connections has been
created with consistent names, all of the elements are overlapped and randomly placed on the upper-left
corner of the editor. To address the layout problem in model transformation, we extended MTBD to
enable demonstration of layout configuration.

Figure 5. The process of scaling a SRN model from two events to three events

LAYOUT SUPPORT IN MTBD

The idea of supporting layout configuration using MTBD is based on an additional demonstration step.
After demonstrating the basic model transformation task, users are able to demonstrate how to configure
the layout (e.g., where to place each element, what layout properties to specify), so that the layout
information can be summarized and integrated in the generated transformation pattern. Because the
demonstration is performed on the concrete model instances in the model editor and the engine
automatically records the low-level layout information (e.g., the specific coordinate values), users can
configure the layout in a WYSIWYG manner without being aware of the implementation details.

Currently, we focus on configuring the layout from two perspectives: the location of the model elements
and the appearance of model elements. Model connections are not considered in the current work,
because in most modeling tools and editors, the layout of connections depends on the source and target
model elements and cannot be customized by users, but the idea proposed in this chapter can be applied to
connections as well.

Configuring Locations of Model Elements

The main layout of a model depends on the location of each model element. In most modeling tools, a
Location attribute is attached to each model element internally, which specifies the coordinates of the
element. In the editors, the Location attribute of an element changes automatically when it is moved.
Therefore, by capturing moving operations (i.e., the drag-and-drop operation in most editors) in the

demonstration, coordinate values can be recorded automatically by reading the updated location of the
element. As model elements often need to be moved in the editor multiple times before reaching the
desired location, rather than recording every moving operation, a confirmation location operation is
provided for users to confirm the final desired location of a model element, which is recorded and
integrated into the generated transformation pattern. The confirmation location operation can be based on
either absolute coordinates or relative coordinates.

Absolute coordinates. The most direct and simplest layout configuration is to use absolute coordinates.
Users can demonstrate where to place each element exactly in the editor. As shown in List 4, two kinds of
operations are added to the editor to support locating and choosing the absolute coordinates of a certain
element. When the transformation is executed, the chosen model elements will be placed in the exact
same location as in the demonstration.

List 4. Layout configuration operations using absolute coordinates

Operation Type Description
Set X as Current Set X in the current coordinates as the desired X
Set Y as Current Set Y in the current coordinates as the desired Y

For example, in the top of Figure 6, the Node in the lower-right corner is selected and confirmed with an
absolute coordinate for both X and Y in the demonstration. When the generated transformation pattern is
executed, the Node is configured with the same coordinate values automatically as shown in the bottom of
Figure 6.

While confirming the absolute coordinates, the actual coordinate values are not visible to users, so that
users are separated from the low-level layout information. The recording engine reads the values, and
saves them in the final generated transformation pattern. In the execution process, the execution engine
loads the values and passes them as parameters to the location configuration process.

The absolute coordinates approach is easy to implement, but not flexible and practical in most model
transformation scenarios. Unless the user is configuring the layout information for a single and unique
model element (e.g., the root or folder of a domain model), using absolute coordinates cannot adapt the
transformation to diverse model evolution scenarios. For example, if any model elements or connections
exist or cross at certain absolute coordinates configured in the demonstration, placing a new element there
will lead to overlaps. In addition, when applying a transformation pattern multiple times, all the newly
created elements will be placed in the same location. Therefore, in many cases, configuring the layout
using relative coordinates is more preferable.

	

Figure 6. Using absolute coordinates in the demonstration (top)

make the element be in the same location in every model evolution scenario (bottom)

Relative coordinates to model boundary. Using relative coordinates needs a reference point. One type of
reference is to consider all the model elements and connections as a whole rectangle (i.e., the minimum
rectangle that includes all the current model elements and connections), and use the boundary of the
rectangle as the reference. The coordinates can be relative to each side of the rectangle from either inside
or outside. Thus, a total of eight operations can be extended, as shown in List 5.

List 5. Layout configuration operations using relative coordinates to model boundary

Operation Type Description
Set Y Relative to Uppermost (Inside/Outside) Set the desired Y to be the current Y relative to the

uppermost boundary of the current model from inside or
outside

Set Y Relative to Lowermost (Inside/Outside) Set the desired Y to be the current Y relative to the
lowermost boundary of the current model from inside or
outside

Set X Relative to Leftmost (Inside/Outside) Set the desired X to be the current X relative to the
leftmost boundary of the current model from inside or
outside

Set X Relative to Rightmost (Inside/Outside) Set the desired X to be the current X relative to the
rightmost boundary of the current model from inside or
outside

Similar to using absolute coordinates, users may demonstrate the relative values by a drag-and-drop
process in the editor without being aware of the low-level details. It is the recording engine that
automatically captures the rectangle boundary in the current editor and calculates the specific relative
values. During the execution process of the generated transformation, the execution engine will capture
the boundary of the model again and set up the location attribute using the stored relative values. For
instance, in the top of Figure 7, Node1 and Node2 are two newly created model elements. When
configuring the layout in the demonstration, Node1 is specified using Set X Relative to Rightmost Outside,
and Set Y as Current, while Node2 applies Set X Relative to Leftmost Inside and Set Y Relative to
Lowermost Inside. The result is that when applying the transformation in other models, Node1 will always
be placed to the right of the existing model, but at the same vertical level as in the demonstration; and
Node2 will always appear on the left-lower corner of the existing model, as shown in the bottom of Figure
7.

The relative coordinate to the model boundary proves to be useful in practice when a large number of new
elements are created in the model evolution process or the same process is executed multiple times (e.g.,
the first motivating example). As the model is enlarged, it is always necessary to add new elements based
on a layout pattern incrementally. However, when the model transformation focuses on modifying a small
number of elements without adding many new elements (e.g., the second motivating example), relative
coordinates to the boundary are not sufficient, and a different type of reference with improved granularity
is needed.

Figure 7. Using coordinates relative to the boundary of the existing model in the demonstration (top)

make the element be in the location relative to the existing model in every model evolution scenario (bottom)

Relative coordinates to model element(s). A more improved granularity and flexible reference is to set up
the coordinates of a model element relative to other model element(s). As enumerated in List 6, users can
configure X/Y based on the location of another model element.

List 6. Layout configuration operations using relative coordinates to model element(s)

Operation Type Description
Set X Relative to Model Element E Set the desired X to be the current X relative to the

X of the model element E
Set Y Relative to Model Element E Set the desired Y to be the current Y relative to the

X of the model element E

Figure 8. Using coordinate relative to the other model elements in the demonstration (top)

make the element be in the location relative to the same model elements in every model evolution scenario (bottom)

In the current implementation, a model element selector has been developed that enables users to choose
any element from the existing model instance, and set up the X or Y coordinate. Again, the recording
engine calculates the relative value and stores it, while the execution engine loads the value and sets up
the location. The calculated relative value can be either positive or negative according to the relative

locations (i.e., the value will be negative if the element is to the left or above the reference element, and
will be positive if the element is to the right or below the reference element).

For example, at the top of Figure 8, several model elements (i.e., Node1, Node2, Node3, Node4, Node5)
are involved in a model transformation scenario. Users configure the location of Node3 using Set X
Relative to Model Element Node2, and Set Y Relative to Model Element Node1, so that Node3 will always
be in the same horizontal level as Node2 and have the same vertical distance to Node1 no matter where
Node2 and Node1 are located in different model instances. On the other hand, both X and Y of Node4 are
configured relative to Node5, the result being that Node4 is always on the upper-left part of Node5 with
the same distance as illustrated in the bottom of Figure 8.

Relative coordinates to specific model elements provide more freedom for users to configure model
element locations. When the reference element(s) were used in the demonstration of the semantic aspect
of the evolution process, the recording and execution engine can save and load the values directly; but if
the reference element(s) are not included in the previous demonstration about semantic aspect evolution
(e.g., using the Node in the upper-left corner as a reference in the top of Figure 7), the element(s) will be
automatically added to the generated transformation as a structural precondition, which means that the
execution engine must match and find out the element in the model transformation to ensure the correct
layout configuration using it.

Configuring the appearance of model elements

Apart from the location of model elements, the appearance (e.g., the color, shape, font, size used in the
model element) is also essential to the layout of the model or even the semantics of the model. Compared
with the location configuration, the appearance is easier to handle. The recording engine captures all the
operation events regarding changing the appearance, and integrates them in the generated transformation
pattern, so that the execution of the pattern will replay these operation events and configure the same
appearance specified in the demonstration.

EXAMPLE LAYOUT DEMONSTRATION

In this section, we demonstrate the use of MTBD to automate the layout configuration for the two
motivating examples presented earlier in the chapter.

Configure Layout for SRN Model Evolution

After demonstrating the model transformation as shown in the previous section, the model evolution at
the semantics level has been accomplished. At this point, users can continue to drag-and-drop each
element in the editor and confirm the desired location using the provided layout configuration operations.

Figure 9 shows the desired layout configuration for each element in the model transformation process.
According to the three steps in this model evolution scenario, the newly created model elements and
connections belong to three parts. The first part is the event definition (i.e., A3, B3, Sn3, S3, Sr3). Assume
that most users prefer to place these elements always above the previous definitions. Therefore, they use
the uppermost boundary of the existing model as the reference for Y, and the X coordinate of each element
in event type 1 for X. Users would generally perform the operations in List 7 in the layout demonstration.

For the new execution snapshot part definition (i.e., TStSnp3, SnpLnProg3, TEnSnp3), we set all the X to
be relative to the rightmost boundary, and Y relative to the root of the execution snapshot StSnpSht
(TStSnp3.Y is set to be directly relative to StSnpSht.Y, SnpLnProg3.Y is set to be relative to TStSnp3.Y,
and TEnSnp3.Y to be relative to SnpLnProg3.Y), please see List 8 for the specific details. Finally, for the
Execution Snapshot Transitions, the X is relative to the rightmost boundary, and Y is relative to the
Snapshot Place it is connected to, please see List 9 for those details.

List 7. Operations to configure layout demonstration for part one of the motivating example

(The layout demonstration is immediately after the model transformation demonstration)

Sequence Operation Performed
36 Set SRNRoot.A3.Y Relative to Uppermost Outside
37 Set SRNRoot.A3.X Relative to A1.X
38 Set SRNRoot.B3.Y Relative to Uppermost Outside
39 Set SRNRoot.B3.X Relative to B1.X
40 Set SRNRoot.Sn3.Y Relative to Uppermost Outside
41 Set SRNRoot.Sn3.X Relative to Sn1.X
42 Set SRNRoot.S3.Y Relative to Uppermost Outside
43 Set SRNRoot.S3.X Relative to S1.X
44 Set SRNRoot.Sr3.Y Relative to Uppermost Outside
45 Set SRNRoot.Sr3.X Relative to Sr1.X

List 8. Operations to configure layout demonstration for part two of the motivating example

Sequence Operation Performed
46 Set SRNRoot.TStSnp3.X Relative to Rightmost Outside
47 Set SRNRoot.TStSnp3.Y Relative to SrnRoot.StSnpSht.Y
48 Set SRNRoot.SnpLnProg3.X Relative to Rightmost Outside
49 Set SRNRoot.SnpLnProg3.Y Relative to TStSnp3.Y
50 Set SRNRoot.TEnSnp3.X Relative to Rightmost Outside
51 Set SRNRoot.TEnSnp3.Y Relative to SnpLnProg3.Y

List 9. Operations to configure layout demonstration for part three of the motivating example

Sequence Operation Performed
52 Set SRNRoot.TProcSnp2,3.X Relative to Rightmost Outside
53 Set SRNRoot.TProcSnp2,3.Y Relative to SrnRoot.StSnpSht.Y
54 Set SRNRoot.TProcSnp3,2.X Relative to Rightmost Outside
55 Set SRNRoot.TProcSnp3,2.Y Relative to TStSnp3.Y

After the demonstration is completed, the recording engine calculates all the values and integrates them in
the final generated transformation pattern. Executing the final pattern will result in the model shown in
Figure 1d.

Figure 9. The layout demonstration in action for the first motivating example

Configuring the Layout for C2M2L Model Evolution

Before addressing the layout problem in the second motivating example, we first demonstrate how to
evolve the model at the semantics level by replicating the overloaded Node. The demonstration in this
scenario is straightforward, which is based on an overloaded Node (e.g., the overloaded Node is defined
as the Node having CPULoad > 100). Replicating a model element requires the creation of a new copy of
the same type of element, as well as setting up all the attributes of the element to be the same as the one
being replicated. Therefore, operations 1-8 and operations 9-14 in List 10 replicate two Nodes and copy
all the attributes from the overloaded Node - MiddleTier2, except the CPULoad is balanced by dividing
the original value. Operations 15-17 deal with the connections. The precondition is given after the
demonstration in the precondition specification dialog, where users can choose any model element or
connections involved in the demonstration and specify the precondition constraints.

Layout demonstration comes after the traditional use of MTBD, which is based on demonstrating the
operational parts of an evolution task. The desired layout as shown in Figure 10 uses the original location
of the overloaded Node as a reference to set up the location for the two new Nodes. The overloaded Node
is moved to the uppermost part of the editor (using its own X and relative Y to the NodeBalancer). Also,
two different colors are configured for the new and old Nodes. Please see List 11 for details.

List 10. Operations in the demonstration for the second motivating example

Sequence Operation Performed
1 Add a Node in C2M2LRoot (Replicate the 1st Node)
2 Set Node.Name = MiddleTier2.Name =

“MiddleTier2”
3 Set Node.AMI = MiddleTier2.AMI = “ami-45e7002c”
4 Set Node.Annotation = MiddleTier2.Annotation =

“Middle Tier for PetStore”
5 Set Node.HeartbeatURI = MiddleTier2.HeartbeatURI =

 “http://ps01.aws.amazon.com/hb”
6 Set Node.HostName = MiddleTier2.HostName =

 “http://ps01.aws.amazon.com/hb”
7 Set Node.CPULoad =

MiddleTier2.CPULoad / 2 = 115 / 2 = 57.5
p1MiddleTier2.CPULoad > 100

8 Add a Node in C2M2LRoot (Replicate the 2nd Node)
9 Set Node.Name = MiddleTier2.Name =

“MiddleTier2”
10 Set Node.AMI = MiddleTier2.AMI = “ami-45e7002c”
11 Set Node.Annotation = MiddleTier2.Annotation =

“MiddleTier for PetStore”
12 Set Node.HeartbeatURI = MiddleTier2.HeartbeatURI =

 “http://ps01.aws.amazon.com/hb”
13 Set Node.HostName = MiddleTier2.HostName =

 “http://ps01.aws.amazon.com/hb”
14 Set Node.CPULoad =

MiddleTier2.CPULoad / 2 = 115 / 2 = 57.5
15 Remove the connection between MiddleTier2 and LoadBalancer
16 Connect MiddleTier2 (1st) and LoadBalancer
17 Connect MiddleTier2 (2nd) and LoadBalancer

List 11. Operations to configure layout in the demonstration of the second motivating example
Sequence Operation Performed

18 Set MiddleTier2(1st).X Relative to MiddleTier2(overloaded).X
19 Set MiddleTier2(1st).Y Relative to MiddleTier2(overloaded).Y
20 Set MiddleTier2(2nd).X Relative to MiddleTier2(overloaded).X
21 Set MiddleTier2(2nd).Y Relative to MiddleTier2(overloaded).Y
22 Set MiddleTier2(overloaded).Y Relative to NodeBalancer.Y
23 Set MiddlerTier2(1st) background color to Green
24 Set MiddlerTier2(2nd) background color to Green
25 Set MiddlerTier2(overloaded) background color to Red

When the final generated pattern is applied to other model instances, all the overloaded Nodes can be
detected automatically based on the precondition, and the required new Nodes can be created to replicate
the old ones, with the location configured and colors highlighted.

	

Figure 10. Demonstrating the layout configuration for the C2M2L model

CONCLUSION AND FUTURE WORK

This chapter presents a new approach for configuring model layout during model evolution, which is
based on the demonstration-based technique – MTBD. The demonstration is performed on concrete
model instances, whereby users move model elements and confirm locations or appearance to customize
the desired layout. The ability to demonstrate the desired layout can reflect the implicit semantics and the
user’s own mental map, without the need to be aware of the low-level details associated with model
transformation and metamodeling. Because the demonstration is performed in a WYSIWYG manner, the
layout configuration is more precise. We have found that this enables easier testing and debugging of the
layout concerns associated with a model evolution task. Moreover, the layout configuration is performed
after demonstrating the model transformation of the core evolution task, which clearly separates the core
evolution task from the model layout concerns, rather than being entangled together. Furthermore, no
model transformation languages are used in the process, and users do not need to understand metamodel
definitions, which enables general end-users and non-programmers to configure their desired layout in the
model evolution process.

As future work, dealing with the overlaps of model elements in model evolution is our next goal.
Although the relative coordinate configuration helps to avoid the overlaps, it cannot adapt to every
scenario perfectly, particularly when model elements are used as references. Integrating overlap removal
algorithms might solve the problem, but there is also a possibility that the implicit semantics and a user’s
mental map will be affected after applying the algorithm. Additionally, we plan to also implement the
configuration of model layout for exogenous model transformations using MTBD (i.e., the model
transformation between two different domains) so that the layout of a target model is set up based on the
source model’s layout.

ACKNOWLEDGEMENT

This work is supported by NSF CAREER award CCF-1052616.

REFERENCES

Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/ (last accessed June, 2011).

Battista, G., Eades, P., & Tamassia, R. (1993). Algorithms for Automatic Graph Drawing: An Annotated
Bibliopgraphy. Technical report, Department of Computer Science, Brown University.

Bottoni, P., Guerra, E., & de Lara, J. (2006). Metamodel-based Definition of Interaction with Visual
Environments. In Proceedings of the 2nd International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI ’06), CEUR Workshop Proceedings 214.

Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1998). Graph Drawing: Algorithms for the
Visualization of Graphs, Prentice Hall.

Dwyer, T., Marriott, K., & Wybrow, M. (2009). Dunnart: A Constraint-Based Network Diagram
Authoring Tool. In 16th International Symposium on Graph Drawing (GD ’08), Springer-Verlag LNCS
5417, Hersonissos, Heraklion Crete, Greece, pp. 384-389.

France, R., Ghosh, S., Song, E., & Kim, D. (2003). A Metamodeling Approach to Pattern-Based Model
Refactoring. IEEE Software, vol. 20, no. 5, pp. 52-58.

Fruchterman, T., & Reingold, E. (1991) Graph Drawing by Force-Directed Placement. Software Practice
and Experience, vol. 21, pp. 1129-1164.

Generic Eclipse Modeling System (GEMS). http://www.eclipse.org/gmt/gems/. (last accessed June,
2011).

Graphical Modeling Framework (GMF). http://www.eclipse.org/modeling/gmf/. (last accessed June,
2011).

Gray, J., Lin, Y., & Zhang, J. (2006). Automating Change Evolution in Model-Driven Engineering. IEEE
Computer, vol. 39, no. 2, pp. 51-58 (2006).

Gray, J., Tolvanen, J.P, Kelly, S., Gokhale, A., Neema, S., & Sprinkle, J. (2007). Domain-Specific
Modeling. Handbook of Dynamic System Modeling, CRC Press.

Greenfield, J., & Short, K. (2004) Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools, John Wiley and Sons.

Hower, W., & Graf, W.H. (1996). A Bibliographical Survey of Constraint-based Approaches to CAD,
Graphics, Layout, Visualization, and Related Topics. Knowledge-Based Systems, 9(7), Elsevier, 449-464.

Johannes, J., & Gaul, K. (2009). Towards a Generic Layout Composition Framework for Domain-specific
Models. In Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling, Orlando, FL, 6
pages.

Jouault, F., & Kurtev, I. (2005). Transforming Models with ATL. In Proceedings of the International
Conference on Model Driven Engineering Languages and Systems, Springer-Verlag LNCS 3844, pp.
128-138.

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A Model Transformation Tool. Science of
Computer Programming, vol. 72, no.1-2, pp. 31-39.

Jucknath-John, S., Graf, D., & Taentzer, G. (2006). Evolutionary Layout of Graph Transformation
Sequences. In Proceedings of the Third International Workshop on Graph Based Tools (GraBaTs),
Electronic Communications of the EASST , vol. 1.

Kogekar, A., Kaul, D., Gokhale, A., Vandal, P., Praphamontripong, U., Gokhale, S., Zhang, J., Lin, Y., &
Gray, J. (2006). Model-driven Generative Techniques for Scalable Performabality Analysis of Distributed
Systems. IPDPS Workshop on Next Generation Systems, Rhodes Island, Greece, pp. 292-292.

Langer, P., Wimmer, M., & Kappel, G. (2010). Model-to-Model Transformations By Demonstration. In
Proceedings of International Conference on Model Transformation, Malaga, Spain, pp. 153-167.

Lin, Y., Gray, J., Zhang, J., Nordstrom, S., Gokhale, A., Neema, S., & Gokhale, S. (2008). Model
Replication: Transformations to Address Model Scalability. Software: Practice and Experience, vol. 38,
no. 14, pp. 1475-1497.

Lédeczi, A., Bakay, A., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001).
Composing Domain-specific Design Environments. IEEE Computer, vol. 34, no. 11, pp. 44-51.

Maier, S., & Minas, M.. (2009). Rule-based Diagram Layout using Meta Models. In Proceedings of the
Workshop on Visual Languages and Computing 2009 (VLC 2009), San Francisco, USA.

MetaCase+ (MetaCase+). http://www.metacase.com/. (last accessed June, 2011).

Misue, K., Eades, P., Lai, W., & Sugiyama, K. (1995). Layout Adjustment and the Mental Map. Journal
of Visual Languages and Computing, vol. 6, no. 2, pp. 183-210.

MOF Query/Views/Transformations Specification (QVT). http://www.omg.org/cgi-bin/doc?ptc/2005-11-
01 (last accessed June, 2011).

Muppala, J., Ciardo, G., & Trivedi, K. (1994). Stochastic Reward Nets for Reliability Prediction.
Communications in Reliability, Maintainability and Serviceability, vol. 1, no. 2, pp. 9-20.

Pilgrim, J. (2007). Mental Map and Model Driven Development. In Proceedings of the Workshop on the
Layout of (Software) Engineering Diagrams (LED), Electronic Communications of the EASST, vol. 7.

Schmidt, D., Stal, M., Rohnert, H., & Buschman, F. (2000). Pattern-Oriented Software Architecture –
Volume 2: Patterns for Concurrent and Networked Objects, John Wiley and Sons.

Sprinkle, J. (2003). Metamodel Driven Model Migration. PhD thesis, Vanderbilt University, Nashville,
TN.

Sun, Y, Gray, J., Langer, P., Wimmer, M., & White, J. (2010). A WYSIWYG Approach for Configuring
Model Layout using Model Transformations. 10th Workshop on Domain-Specific Modeling, held at
SPLASH 2010, Reno, NV, pp. 20-25.

Sun, Y., Gray, J., & White, J. (2010). MT-Scribe: A Flexible Tool to Support Model Evolution.
Workshop on Flexible Modeling Tools (FlexiTools), held at SPLASH 2010, Reno, NV.

Sun, Y., White, J., & Gray, J. (2009b). Model Transformation by Demonstration. In Proceedings of
International Conference on Model Driven Engineering Languages and Systems, Denver, CO, pp. 712-
726.

Sun, Y., White, J., Gray, J., & Gokhale, A. (2009a). Model-Driven Automated Error Recovery in Cloud
Computing. Model-driven Analysis and Software Development: Architectures and Functions, IGI Global,
Hershey, PA, USA.

